Browsing by Subject "Ultrasonic transducers"
Now showing 1 - 20 of 33
- Results Per Page
- Sort Options
Item Open Access Analytic modeling of loss and cross-coupling in capacitive micromachined ultrasonic transducers(IEEE, Piscataway, NJ, United States, 1998) Bozkurt, A.; Degertekin, F. L.; Atalar, Abdullah; Khuri-Yakub, B. T.The structural loss mechanism of capacitive micromachined ultrasonic transducer (cMUT) is investigated using finite element analysis and the normal mode theory. A single micromachined transducer membrane on an infinite silicon substrate is simulated by incorporating absorbing boundary conditions in the finite element method. This enables direct evaluation of the mechanical impedance of the membrane. Furthermore, the field distribution along the thickness of the silicon substrate due to outward radiating wave modes is obtained. The normal mode theory is applied to extract the contributions of different wave modes to the complicated field distributions. It is found that, the lowest order Lamb wave modes are responsible for the loss. Evaluation of absolute and relative power losses due to individual modes indicate that the lowest order anti-symmetric (A0) mode is the dominant radial mode in agreement with experimental measurements. The results of the analysis are used to derive a detailed equivalent circuit model of a cMUT with structural loss.Item Open Access Bandwidth improvement in a cMUT array with mixed sized elements(IEEE, 2005-09) Bayram, Can; Olcum, Selim; Şenlik, Muhammed N.; Atalar, AbdullahA capacitive micromachined ultrasonic transducer (cMUT) is typically fabricated by concatenation of several cMUT cells with identical physical dimensions. If the membrane thickness is kept fixed, the radius of the cMUT determines the center frequency of operation. A smaller radius implies a greater center frequency. Therefore, it should be possible to put cMUTs with different sizes in parallel to get a larger bandwidth at the expense of gain. In this study, we investigate the optimization of the bandwidth characteristics of a cMUT by using mixed size cells. We designed two mixed size cMUT arrays with a predicted optimized fractional bandwidth value of about 155% at 5.4 MHz, and 146% at 8.8 MHz. These values are about 55% and 58% better than what can be achieved with a uniform size array at the corresponding center frequencies. There is almost no loss in the gain bandwidth product when two different sized cMUTs are used in parallel. There is about 9% increase in gain bandwidth product when three different sized cMUTs are used in parallel. It is shown, in this study, that gain bandwidth product and bandwidth can be enhanced by use of mixed size cMUT cells. © 2005 IEEE.Item Open Access Bandwidth, power and noise considerations in airborne cMUTs(IEEE, 2009-09) Şenlik, Muhammed N.; Olcum, Selim; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (cMUTs) offer wider bandwidth in air due to their low mechanical impedances. The impedance mismatch between the air and transducer decreases with the smaller device dimensions increasing the bandwidth at the expense of the degradation in the transmit power and the receive sensitivity. In this work, the bandwidth of cMUT is optimized by increasing its radiation resistance. This is done by properly choosing the size of cMUT membranes and their placement within an array. This selection not only brings an improvement in the transmitted power when it is used as a transmitter, but also improves the noise figure when it is used as a receiver. A further improvement in the noise figure is possible when the cells are clustered and connected to separate receivers. ©2009 IEEE.Item Open Access CMUT array element in deep-collapse mode(IEEE, 2011) Olcum, Semih; Yamaner F.Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCollapse and deep-collapse mode of operations have boosted the pressure outputs of capacitive micromachined ultrasonic transducers (CMUTs) considerably. In this work, we demonstrate a CMUT element operating in the deep-collapse mode with 25 V pulse excitation and without the effects of charge trapping. The fabricated CMUT element consists of 4 by 4 circular cells with 20 μm radius and 1 μm thick plates suspended over a 50 nm cavity. The overall size of the element is 0.190 mm by 0.19 mm. The collapse voltage of the plates is measured to be approximately 3V. By driving the CMUTs with 25V pulses in the deep-collapse mode without any bias, we achieved 1.2 MPa peak-to-peak pressure output on the surface of the CMUT element with a center frequency of 9 MHz and 100% fractional bandwidth. We applied 1000 consecutive electrical pulses with alternating polarity to the element and witnessed no change in the transmitted acoustic pulse. © 2011 IEEE.Item Open Access Comparative analysis of different approaches to target classification and localization with sonar(IEEE, 2001-08) Ayrulu, Birsel; Barshan, BillurThe comparison of different classification and fusion techniques was done for target classification and localization with sonar. Target localization performance of artificial neural networks (ANN) was found to be better than the target differentiation algorithm (TDA) and fusion techniques. The target classification performance of non-parametric approaches was better than that of parameterized density estimator (PDE) using homoscedastic and heteroscedastic NM for statistical pattern recognition techniques.Item Open Access Design charts to maximize the gain-bandwidth product of capacitive micromachined ultrasonic transducers(IEEE, 2005) Ölçüm, Selim; Şenlik, Muhammed Niyazi; Bayram, Can; Atalar, AbdullahIn this work we define a performance measure for capacitive micromachined ultrasonic transducers (cMUT) in the form of a gain-bandwidth product to investigate the conditions that optimize the gain and bandwidth with respect to device dimensions, electrode size and electrical termination resistance. For the transmit mode, we define the figure of merit as the pressure-bandwidth product. Fully-metallized membranes achieve a higher pressure-bandwidth product compared to partially metallized ones. It is shown that the bandwidth is not affected by the electrode size in the transmit mode. In the receive mode, we define the figure of merit as the gain-bandwidth product. We show in this case that the figure of merit can be maximized by optimizing the electrode radius. We present normalized charts for designing an optimum cMUT cell at the desired frequency with a given bandwidth for transmit or receive modes. The effect of spurious capacitance and liquid loading effect are considered. Design examples are given to clarify the use of these charts.Item Open Access Designing transmitting CMUT cells for airborne applications(Institute of Electrical and Electronics Engineers Inc., 2014) Ünlügedik, A.; Taşdelen, A.; Atalar, Abdullah; Köymen, HayrettinWe report a new mode of airborne operation for capacitive micromachined ultrasonic transducers (CMUT), in which the plate motion spans the entire gap without collapsing and the transducer is driven by a sinusoidal voltage without a dc bias. We present equivalent-circuit-based design fundamentals for an airborne CMUT cell and verify the design targets using fabricated CMUTs. The performance limits for silicon plates are derived. We experimentally obtain 78.9 dB//20 μPa@1 m source level at 73.7 kHz, with a CMUT cell of radius 2.05 mm driven by 71 V sinusoidal drive voltage at half the frequency. The measured quality factor is 120. We also study and discuss the interaction of the nonlinear transduction force and the nonlinearity of the plate compliance. © 1986-2012 IEEE.Item Open Access Electrically unbiased driven airborne capacitive micromachined ultrasonic transducer design(IEEE, 2012) Ünlügedik, Aslı; Atalar, Abdullah; Kocabaş, Coşkun; Oğuz, H. Kağan; Köymen, HayrettinWe present a design method for airborne capacitive micromachined ultrasonic transducers (CMUT). We use an equivalent lumped element circuit to model both electrical and mechanical properties of CMUT and analyze it in frequency domain using harmonic balance approach. We use this method to design CMUTs for large transmitted power generation at low drive voltage amplitude. We determine the dimensions of an airborne CMUT using the proposed method that works at 30 kHz with 5 mm radius, 240 μm membrane thickness and 11.8 μm effective gap height. The CMUT is designed such that an atmospheric depression of 70% of effective gap height is maintained. © 2012 IEEE.Item Open Access An equivalent circuit for collapse operation mode of CMUTs(IEEE, 2010) Olcum, Selim; Yamaner F.Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCollapse mode of operation of the capacitive mi-cromachined ultrasonic transducers (CMUTs) was shown to be a very effective way for achieving high output pressures. However, no accurate model exists for understanding the mechanics and limits of the collapse mode. In this work, we extend the analyses made for CMUTs working in uncollapsed mode to collapsed mode. We have developed an equivalent nonlinear electrical circuit that can accurately simulate the mechanical behavior of a CMUT under any large signal electrical excitation. The static and dynamic deflections of a membrane predicted by the model are compared with the finite element simulations. The equivalent circuit model can estimate the static deflection within 1% and the transient behavior of a CMUT membrane within 3% accuracy. The circuit model is also compared to experimental results of pulse excitation applied to fabricated collapse mode CMUTs. The model is suitable as a powerful design and optimization tool for the collapsed as well as the uncollapsed case of CMUTs. © 2010 IEEE.Item Open Access An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode(IEEE, 2011) Olcum, S.; Yamaner, F. Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahThe collapse mode of operation of capacitive micromachined ultrasonic transducers (CMUTs) was shown to be a very effective way to achieve high output pressures. However, no accurate analytical or equivalent circuit model exists for understanding the mechanics and limits of the collapse mode. In this work, we develop an equivalent nonlinear electrical circuit that can accurately simulate the mechanical behavior of a CMUT with given dimensions and mechanical parameters under any large or small signal electrical excitation, including the collapse mode. The static and dynamic deflections of a plate predicted from the model are compared with finite element simulations. The equivalent circuit model can estimate the static deflection and transient behavior of a CMUT plate to within 5% accuracy. The circuit model is in good agreement with experimental results of pulse excitation applied to fabricated CMUTs. The model is suitable as a powerful design and optimization tool for collapsed and uncollapsed CMUTs.Item Open Access Equivalent circuit-based analysis of CMUT cell dynamics in arrays(IEEE, 2013) Oğuz, H. K.; Atalar, Abdullah; Köymen, HayrettinCapacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.Item Open Access Estimation of object location and radius of curvature using ultrasonic sonar(Elsevier, 2001-07) Sekmen, A. Ş.; Barshan, B.Acoustic sensors are very popular in time-of-flight (TOF) ranging systems since they are inexpensive and convenient to use. One of the major limitations of these sensors is their low angular resolution which makes object localization difficult. In this paper, an adaptive multisensor configuration consisting of three transmitter/receiver ultrasonic transducers is introduced to compensate for the low angular resolution of sonar sensors and improve the localization accuracy. With this configuration, the radius of curvature and location of cylindrical objects are estimated. Two methods of TOF estimation are considered: thresholding and curve-fitting. The bias-variance combinations of these estimators are compared. Theory and simulations are verified by experimental data from a real sonar system. Extended Kalman filtering is used to smooth the data. It is shown that curve-fitting method, compared to thresholding method, provides about 30% improvement in the absence of noise and 50% improvement in the presence of noise. Moreover. the adaptive configuration improves the estimation accuracy by 35-40%. (C) 2001 Elsevier Science Ltd. All rights reserved.Item Open Access Experimental characterization of capacitive micromachined ultrasonic transducers(IEEE, 2007) Ölçüm, Selim; Atalar, Abdullah; Köymen, Hayrettin; Oğuz, Kağan; Şenlik, Muhammed N.In this paper, capacitive micromachined ultrasonic transducers are fabricated using a sacrificial surface micromachining process. A testing procedure has been established in order to measure the absolute transmit and receive sensitivity spectra of the fabricated devices. The experiments are performed in oil. Pulse-echo experiments are performed and the results are compared to the pitch-catch measurements using calibrated transducers.Item Open Access A fast method of calculating diffraction loss between two facing transducers(IEEE, 1988) Atalar, AbdullahA fast method of calculating the diffraction loss between two facing circular ultrasonic transducers of unequal size is presented. This problem is directly applicable for minimization of diffraction loss in acoustic lens design. Graphs for amplitude and phase are presented that can be used to design lenses with the optimal transducer size for minimum diffraction loss. The theory is extended to include the diffraction loss determination in anisotropic materials. The results are in good agreement with previous experimental and theoretical results of the equal transducer size case. The effect of diffraction on pulsed excitation is also treated.Item Open Access Fresnel lamb wave and V-groove lenses with tunable mode selectivity(IEEE, 1995) Yaralıoğlu, Göksen Göksenin; Atalar, Abdullah; Köymen, HayrettinThe Lamb wave and V-groove lenses are distinguished by their high surface wave excitation efficiencies. However, due to the fixed incidence angle, a particular lens can only be used for materials having surface wave velocities within a limited range. Hence, it is desirable to have lenses with adjustable incidence angle. Conventional spherical lenses implemented in Fresnel planar lens form have been demonstrated earlier. In this work, Lamb wave and V-groove lenses constructed as Fresnel lenses are presented. We also discuss the feasibility of Fresnel lenses with air as the coupling medium. It is shown that it is possible to build air coupled Fresnel lenses with a reasonable conversion efficiency into subsurface waves.Item Open Access Improved performance of cMUT with nonuniform membranes(IEEE, 2005-09) Şenlik, Muhammed N.; Olcum, Selim; Atalar, AbdullahWhen capacitive micromachined ultrasonic transducers are immersed in water, the bandwidth of the device is limited by the membrane's second resonance frequency. At this frequency no mechanical power to immersion medium can be transferred. We present a membrane shape to shift the second resonance frequency to a higher value. The structure consists of a very thin membrane at the outer rim with a rigid mass at the center. The stiffness of the central region moves the second resonance to a higher frequency. This membrane configuration is shown to work better in terms of gain and bandwidth as compared to conventional uniform membranes in both transmission and reception. © 2005 IEEE.Item Open Access Interaction between a cMUT cell and a liquid medium around the parallel resonance frequency(IEEE, 2007-10) Şenlik, Muhammed N.; Atalar, Abdullah; Olçum, SelimIn this paper, we present how a capacitive micromachined ultrasonic transducer (cMUT) couples to the immersion medium, based on an accurate parametric model. We show that the velocity of cMUT membrane can be written as a sum of an average velocity term and a residual term. We demonstrate that this residual term carries non-zero energy at the parallel resonance frequency by investigating the interaction between the cMUT cell and a liquid medium. We develop a model that is also applicable around the parallel resonance frequency. © 2007 IEEE.Item Open Access Microfabricated ultrasonic transducers: towards robust models and immersion devices(IEEE, 1996-11) Ladabaum, I.; Jin, X.; Soh, H. T.; Pierre, F.; Atalar, Abdullah; Khuri-Yakub, B. T.The successful fabrication of ultrasonic immersion transducers is reported. Transducers are observed to operate from 1 MHz to 20 MHz in water, with the frequency range limited by electronics, not the transducers. Transmission results are included which show that a single pair of transducers is able to operate in water at 4, 6, and 8 MHz with a signal to noise ratio of at least 48 dB. The same transducer pair is shown to operate in air at 6 MHz. A model is introduced which highlights the significant parameters of transducer design. The model enables the design of optimized transducers.Item Open Access Micromachinable leaky wave air transducers(IEEE, 1997-11) Değertekin, F. L.; Atalar, Abdullah; Khuri-Yakub, B. T.In this paper, ultrasonic air transducers which use the lowest order antisymmetric (A/sub 0/) mode Lamb waves in a thin plate as a means of efficient coupling of ultrasonic energy to air are discussed. For a silicon plate of 1 /spl mu/m thickness, the energy leak rates can go up to 0.6 dB per wavelength. At MHz frequencies the plate thickness should be in the range of 1-10 /spl mu/m, which requires micromachined structures to be used. The radiation pattern of the transducers can be controlled by the geometry of the transducer, which can also be used for focusing. A theoretical model to calculate the efficiency and optimized transducer dimensions is presented. This model is applied to common micromachining materials such as silicon, silicon nitride and silicon dioxide. The analysis show that, with these transducers it is possible to achieve a conversion loss with a minimum of 8.7 dB and 78% fractional bandwidth. Experimental results on transmission imaging are also presented using an implementation of the transducer operating around 580 kHz.Item Open Access A new detection method for capacitive micromachine ultrasonic transducers(IEEE, 2001) Ergun, A. S.; Temelkuran, B.; Özbay, Ekmel; Atalar, AbdullahCapacitive micromachine ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They consist of many small circular membranes that are connected in parallel. In this work, we report a new detection method for cMUTs. We model the membranes as capacitors and the interconnections between the membranes as inductors. This kind of LC network is called an artificial transmission line. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the frequency of the signal through it. By measuring the electrical length of the artificial line at a high RF frequency (in the gigahertz range), the vibrations of the membranes can be detected in a very sensitive manner. For the devices we measured, we calculated the minimum detectable displacement to be in the order of 10 -5 Å/√Hz with a possible improvement to 10 -7 Å/√Hz.