An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Print ISSN

0885-3010

Electronic ISSN

Publisher

IEEE

Volume

58

Issue

7

Pages

1468 - 1477

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The collapse mode of operation of capacitive micromachined ultrasonic transducers (CMUTs) was shown to be a very effective way to achieve high output pressures. However, no accurate analytical or equivalent circuit model exists for understanding the mechanics and limits of the collapse mode. In this work, we develop an equivalent nonlinear electrical circuit that can accurately simulate the mechanical behavior of a CMUT with given dimensions and mechanical parameters under any large or small signal electrical excitation, including the collapse mode. The static and dynamic deflections of a plate predicted from the model are compared with finite element simulations. The equivalent circuit model can estimate the static deflection and transient behavior of a CMUT plate to within 5% accuracy. The circuit model is in good agreement with experimental results of pulse excitation applied to fabricated CMUTs. The model is suitable as a powerful design and optimization tool for collapsed and uncollapsed CMUTs.

Course

Other identifiers

Book Title

Citation