Browsing by Subject "Plasma enhanced chemical vapor deposition"
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Item Open Access Characterization of thermally poled germanosilicate thin films(Optical Society of American (OSA), 2004) Ozean, A.; Digonnet, M.J.F.; Kino G.S.; Ay F.; Aydınlı, AtillaWe report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ∼0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13-16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ∼1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge. ©2004 Optical Society of America.Item Open Access Charge retention in quantized energy levels of nanocrystals(Elsevier B.V., 2007) Dâna, A.; Akça, I.; Ergun, O.; Aydınlı, Atilla; Turan, R.; Finstad, T. G.Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.Item Open Access Comparison of electron and hole charge-discharge dynamics in germanium nanocrystal flash memories(AIP Publishing, 2008-02) Akça, İmran B.; Dâna, Aykutlu; Aydınlı, Atilla; Turan, R.Electron and hole charge and discharge dynamics are studied on plasma enhanced chemical vapor deposition grown metal-oxide-silicon germanium nanocrystal flash memory devices. Electron and hole charge and discharge currents are observed to differ significantly and depend on annealing conditions chosen for the formation of nanocrystals. At low annealing temperatures, holes are seen to charge slower but to escape faster than electrons. They discharge slower than electrons when annealing temperatures are raised. The results suggest that discharge currents are dominated by the interface layer acting as a quantum well for holes and by direct tunneling for elec-trons.Item Open Access Femtosecond laser crystallization of amorphous Ge(American Institute of Physics, 2011) Salihoglu, O.; Kürüm, U.; Yaglıoglu, G. H.; Elmali, A.; Aydınlı, AtillaUltrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm -1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.Item Open Access A figure of merit for optimization of nanocrystal flash memory design(2008) Dâna, A.; Akca, I.; Aydınlı, Atilla; Turan, R.; Finstad, T. G.Nanocrystals can be used as storage media for carriers in flash memories. The performance of a nanocrystal flash memory depends critically on the choice of nanocrystal size and density as well as on the choice of tunnel dielectric properties. The performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability. We present a model that describes the charge/discharge dynamics of nanocrystal flash memories and calculate the effect of nanocrystal, gate, tunnel dielectric and substrate properties on device performance. The model assumes charge storage in quantized energy levels of nanocrystals. Effect of temperature is included implicitly in the model through perturbation of the substrate minority carrier concentration and Fermi level. Because a large number of variables affect these performance measures, in order to compare various designs, a figure of merit that measures the device performance in terms of design parameters is defined as a function of write/erase/discharge times which are calculated using the theoretical model. The effects of nanocrystal size and density, gate work function, substrate doping, control and tunnel dielectric properties and device geometry on the device performance are evaluated through the figure of merit. Experimental data showing agreement of the theoretical model with the measurement results are presented for devices that has PECVD grown germanium nanocrystals as the storage media. CopyrightItem Open Access Formation of Ge nanocrystals and SiGe in PECVD grown SiNx: Ge thin films(Elsevier, 2006) Dana, A.; Tokay, S.; Aydınlı, AtillaFormation of Ge nanocrystals in SiNx matrices has been studied using plasma enhanced chemical vapor deposition in both as deposited samples as well as in post-vacuum annealed samples. Low temperature and short duration anneals in vacuum resulted in Ge nanocrystals whereas prolonged anneals at higher temperatures resulted in Ge nanocrystals accompanied with SiGe formation at the SiNx/Si interface. Raman Scattering Spectroscopy was extensively used to track the formation of various phonon modes during the diffusion of Ge through SiNx and into the Si substrate.Item Open Access Growth of Ge nanoparticles on SiO2 / Si interfaces during annealing of plasma enhanced chemical vapor deposited thin films(Elsevier B.V., 2007) Foss, S.; Finstad, T. G.; Dana, A.; Aydınlı, AtillaMultilayer germanosilicate (Ge:SiO2) films have been grown by plasma enhanced chemical vapor deposition. Each Ge:SiO2 layer is separated by a pure SiO2 layer. The samples were heat treated at 900 °C for 15 and 45 min. Transmission electron microscopy investigations show precipitation of particles in the layers of highest Ge concentration. Furthermore there is evidence of diffusion between the layers. This paper focuses mainly on observed growth of Ge particles close to the interface, caused by Ge diffusion from the Ge:SiO2 layer closest to the interface through a pure SiO2 layer and to the interface. The particles grow as spheres in a direction away from the interface. Particles observed after 15 min anneal time are 4 nm in size and are amorphous, while after 45 min anneal time they are 7 nm in size and have a crystalline diamond type Ge structure.Item Open Access High-speed characterization of solar-blind AlxGa 1-xN p-i-n photodiodes(Institute of Physics, 2004) Bıyıklı, Necmi; Kimukin, I.; Tut, T.; Kartaloglu, T.; Aytur, O.; Özbay, EkmelWe report on the temporal pulse response measurements of solar-blind AlxGa1-xN-based heterojunction p-i-n photodiodes. High-speed characterization of the fabricated photodiodes was carried out at 267 nm. The bandwidth performance was enhanced by an order of magnitude with the removal of the absorbing p+ GaN cap layer. 30 μm diameter devices exhibited pulse responses with ∼70 ps pulse width and a corresponding 3 dB bandwidth of 1.65 GHz.Item Open Access Highly doped silicon micromachined photonic crystals(IEEE, Piscataway, NJ, United States, 2000) Temelkuran, B.; Bayındır, Mehmet; Özbay, Ekmel; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.Summary form only given. Photonic crystals are periodic structures with the property of reflecting the electromagnetic (EM) waves in all directions within a certain frequency range. These structures can be used to control and manipulate the behaviour of EM waves. Although earlier work concentrated on building these crystals with dielectric materials, there are certain advantages of introducing metals to photonic crystals. First, metals offer a high rejection rate when compared to the dielectric crystals. Second, for microwave applications, the dimensions of metallic crystals can be kept much smaller than the minimum dimensions needed for a typical dielectric crystal. In the paper, we propose a method for the fabrication of layer-by-layer metallic photonic crystals. A similar method had been used by Ozbay et al. to fabricate dielectric photonic crystals using silicon wafers. We fabricated a new layer-by-layer photonic crystal using highly doped silicon wafers.Item Open Access Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride(SPIE, 1998) Serpengüzel, Ali; Aydınlı, Atilla; Bek, AlpanFabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride - air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.Item Open Access Raman and TEM studies of Ge nanocrystal formation in SiOx: Ge/SiOx multilayers(Wiley, 2007) Dana, Aykutlu; Aǧan, S.; Tokay, S.; Aydınlı, Atilla; Finstad, T. G.Alternating germanosilicate-siliconoxide layers of 10-30 nm thickness were grown on Si substrates by plasma enhanced chemically vapor deposition (PECVD). The compositions of the grown films were determined by X-ray photoelectron spectroscopy measurements. The films were annealed at temperatures varying from 670 to 1000°C for 5 to 45 minutes under nitrogen atmosphere. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive X-ray analysis (EDAX) data confirm presence of Ge nanocrystals in each layer. The effect of annealing on the Ge nanocrystal formation in multilayers was investigated by Raman spectroscopy and Transmission Electron Microscopy (TEM). As the annealing temperature is raised to 850°C, single layer of Ge nanocrystals observed at lower annealing temperatures is transformed into a double layer with the smaller sized nanocrystals closer to the substrate SiO2 interface.Item Open Access The role of the interface in germanium quantum dots: when not only size matters for quantum confinement effects(Royal Society of Chemistry, 2015) Cosentino, S.; Mio, A. M.; Barbagiovanni, E. G.; Raciti, R.; Bahariqushchi, R.; Miritello, M.; Nicotra, G.; Aydınlı, Atilla; Spinella, C.; Terrasi, A.; Mirabella, S.Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects. © The Royal Society of Chemistry.Item Open Access Solar-blind A1GaN-based p-i-n photodiodes with low dark current and high detectivity(IEEE, 2004) Bıyıklı, Necmi; Kimukin, I.; Aytur, O.; Özbay, EkmelWe report solar-blind AlxGal1-xN-based heterojunction p-i-n photodiodes with low dark current and high detectivity. After the p+ GaN cap layer was recess etched, measured dark current was below 3 fA for reverse bias values up to 6 V. The device responsivity increased with reverse bias and reached 0.11 A/W at 261 nm under 10-V reverse bias. The detectors exhibited a cutoff around 283 nm, and a visible rejection of four orders of magnitude at zero bias. Low dark current values led to a high differential resistance of 9.52 × 1015 Ω. The thermally limited detectivity of the devices was calculated as 4.9 × 1014 cm · Hz1/2W-1. © 2004 IEEE.Item Open Access Strong enhancement of spontaneous emission in hydrogenated amorphous silicon nitride coupled-microcavity structures(IEEE, 2001) Bayındır, Mehmet; Tanrıseven, Selim; Aydınlı, Atilla; Özbay, EkmelThe modification of spontaneous emission from the hydrogenated amorphous silicon nitride layers in a coupled-microcavity (CMC) structure was investigated. The CMC structure was composed of alternating silicon-oxide and silicon-nitride multilayers. The results showed that the strong enhancement of spontaneous emisssion can be achieved throughout the cavity band.Item Open Access Structural and loss characterization of SiON layers for optical waveguide applications(IEEE, 2000) Ay, Feridun; Aydınlı, Atilla; Roeloffzen, C.; Driessen, A.Silicon oxynitride films for optical waveguide applications were grown at 350°C in a PECVD reactor. ATR-FTIR spectroscopy was used to identify the bond structure and absorption characteristics in the mid-infrared region. Annealing of the films was performed together with close monitoring of the N-H bond at 3400 cm-1 and correlated with optical loss measurements. The possibility of a new method for the reduction of the N-H bonds without annealing is discussed.Item Open Access Synthesis and size differentiation of Ge nanocrystals in amorphous SiO 2(Springer, 2006) Aǧan, S.; Çelik-Aktaş, A.; Zuo, J. M.; Dana, A.; Aydınlı, AtillaGermanosilicate layers were grown on Si substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed at different temperatures ranging from 700-1010 °C for durations of 5 to 60 min. Transmission electron microscopy (TEM) was used to investigate Ge nanocrystal formation in SiO 2:Ge films. High-resolution cross section TEM images, electron energy-loss spectroscopy and energy dispersive X-ray analysis (EDX) data indicate that Ge nanocrystals are present in the amorphous silicon dioxide films. These nanocrystals are formed in two spatially separated layers with average sizes of 15 and 50 nm, respectively. EDX analysis indicates that Ge also diffuses into the Si substrate.Item Open Access TEM studies of Ge nanocrystal formation in PECVD grown SiO 2: Ge / SiO2 multilayers(Institute of Physics, 2006) Aǧan, S.; Dana, A.; Aydınlı, AtillaWe investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 °C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 °C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 °C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO2 interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer. © 2006 IOP Publishing Ltd.Item Open Access Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride(Pergamon Press, 1996) Aydınlı, A.; Serpengüzel, A.; Vardar, D.Hydrogenated amorphous silicon nitride (a-SiNx:H) samples have been prepared by plasma enhanced chemical vapor deposition (PECVD) using a mixture of silane (SiH4), nitrogen and ammonia (NH3). Most films exhibit visible photoluminescence (PL) and some emit strong PL after annealing. While films grown without NH3 exhibit PL in the deep red, those grown with NH3 show PL in the green. The PL properties of these films with no oxygen (O) content are similar to those of silicon oxide (SiOx) films and porous Si. Using infrared and X-ray Photoelectron Spectroscopy, we suggest that PL from a-SiNx:H films originate from Si clusters which form during PECVD and crystallize upon annealing. We propose that the presence of O is not necessary for efficient PL.Item Open Access X-ray photoelectron spectroscopic analysis of Si nanoclusters in SiO 2 matrix(American Chemical Society, 2006) Dane, A.; Demirok, U. K.; Aydınlı, Atilla; Süzer, ŞefikWe investigated silicon nanoclusters Si(nc) in a SiO2 matrix prepared by the plasma-enhanced chemical vapor deposition technique, using X-ray photoelectron spectroscopy (XPS) with external voltage stimuli in both static and pulsed modes. This method enables us to induce an additional charging shift of 0.8 eV between the Si2p peaks of the oxide and the underlying silicon, both in static and time-resolved modes, for a silicon sample containing a 6 nm oxide layer. In the case of the sample containing silicon nanoclusters, both Si2p peaks of Si(nc) and host SiO2 undergo a charging shift that is 1 order of magnitude larger (> 15 eV), with no measurable difference between them (i.e., no differential charging between the silicon nanoclusters and the oxide matrix could be detected). By use of a measured Auger parameter, we estimate the relaxation energy of the Si(nc) in the SiO2 matrix as -0.4 eV, which yields a -0.6 eV shift in the binding energy of the Si(nc) with respect to that of bulk Si in the opposite direction of the expected quantum size effect. This must be related to the residual differential charging between the silicon nanoclusters and the oxide host. Therefore, differential charging is still the biggest obstacle for extracting size-dependent binding energy shifts with XPS when one uses the oxide peak as the reference. © 2006 American Chemical Society.