Charge retention in quantized energy levels of nanocrystals

Date

2007

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physica E : Low-Dimensional Systems and Nanostructures

Print ISSN

1386-9477

Electronic ISSN

Publisher

Elsevier B.V.

Volume

38

Issue

1-2

Pages

94 - 98

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.

Course

Other identifiers

Book Title

Citation