Browsing by Subject "Optoelectronics"
Now showing 1 - 20 of 21
- Results Per Page
- Sort Options
Item Open Access Broadband optical modulators based on graphene supercapacitors(American Chemical Society, 2013) Polat, E. O.; Kocabas, C.Optical modulators are commonly used in communication and information technology to control intensity, phase, or polarization of light. Electro-optic, electroabsorption, and acousto-optic modulators based on semiconductors and compound semiconductors have been used to control the intensity of light. Because of gate tunable optical properties, graphene introduces new potentials for optical modulators. The operation wavelength of graphene-based modulators, however, is limited to infrared wavelengths due to inefficient gating schemes. Here, we report a broadband optical modulator based on graphene supercapacitors formed by graphene electrodes and electrolyte medium. The transparent supercapacitor structure allows us to modulate optical transmission over a broad range of wavelengths from 450 nm to 2 μm under ambient conditions. We also provide various device geometries including multilayer graphene electrodes and reflection type device geometries that provide modulation of 35%. The graphene supercapacitor structure together with the high-modulation efficiency can enable various active devices ranging from plasmonics to optoelectronics. © 2013 American Chemical Society.Item Open Access Design and synthesis of self-assembling peptides for fabrication of functional nanomaterials(2016-12) Khalily, Mohammad ArefSelf-assembling peptides are a class of supramolecular polymers, which exploit noncovalent interactions such as hydrogen bonding, hydrophobic, electrostatic, charge-transfer complex, π-π, and van der Waals interactions to generate well-defined supramolecular nanostructures including nanospheres, nanosheets, nanotubes, and nanofibers. These versatile peptide-based supramolecular nanomaterials have been utilized in variety of applications including catalysis, sensing, light harvesting, optoelectronic, bioelectronic and tissue engineering. In this thesis, use of supramolecular peptide nanofibers formed by specially designed short peptide sequences that can form sheet-like hydrogen bonded structures for controlled synthesis of nanometer scale functional materials were explored. Specifically, n-type and p-type β-sheet forming short peptide sequences were synthesized, which assemble separately into well-ordered nanofibers in aqueous media. These p-type and n-type nanofibers coassemble via hydrogen bonding and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This smart molecular design ensures alternating arrangement of D and A chromophores within n/p-coassembled supramolecular nanowires. Supramolecular n/p- coassembled nanowires were found to be formed by alternating A-D-A unit cells having an association constant of (KA) of 5 x 105 M-1. Moreover, I designed and synthesized β-sheet forming peptide nanofibers to fabricate different metal and metal oxide nanostructures in highly controlled manner using wet chemistry and atomic layer deposition techniques. These hybrid organic-inorganic nanostructures were employed in model Suzuki coupling, alkyne-azide cycloaddition and hydrolysis of ammonia borane reactions.Item Open Access Electric field dependent optoelectronic nature of InGaN/GaN quantum structures and devices(2012) Sarı, EmreIn the past two decades we have been witnessing the emergence and rapid development of III-Nitride based optoelectronic devices including InGaN/GaN light-emitting diodes (LEDs) and laser diodes with operation wavelengths ranging from green-blue to near-UV. These InGaN/GaN devices are now being widely used in applications important for lighting, displays, and data storage, collectively exceeding a total market size of 10 billion USD. Although InGaN/GaN has been studied and exploited very extensively to date, its field dependent nature is mostly unknown and is surprisingly prone to quite unexpected behavior due to its intrinsic polarization property. In this thesis, we report our systematic study on the electric field dependent characteristics of InGaN/GaN quantum structures and devices including modulators and LEDs. Here we present our comparative study of electroabsorption in polar c-plane InGaN/GaN multiple quantum wells (MQWs) with different built-in polarization induced electrostatic fields. Analyzing modulator structures with varying structural MQW parameters, we find that electroabsorption grows stronger with decreasing built-in electrostatic field strength inside the well layer, as predicted by our theoretical model and verified by our experimental results. To further explore the field dependent optoelectronic nature of c-plane grown InGaN/GaN quantum structures, we investigate radiative carrier dynamics, which is of critical importance for LEDs. Our time and spectrum resolved photoluminescence measurements and numerical analyses indicate that the carrier lifetimes, the radiative recombination lifetimes, and the quantum efficiencies all decrease with increasing field. We also study the physics of electroabsorption and carrier dynamics in InGaN/GaN quantum heterostructures grown intentionally on nonpolar a-plane of the wurtzite crystal structure, which are free of the polarization-induced electrostatic fields. We compare these results with the conventional c-plane grown polar structures. In the polar case, we observe blue-shifting absorption profile and decreasing carrier lifetimes with increasing electric field. In the nonpolar case, however, we observe completely the opposite: a red-shifting absorption profile and increasing carrier lifetimes. We explain these observations in the context of basic physical principles including Fermi‟s golden rule and quantum-confined Stark effect. Also, we present electroabsorption behavior of InGaN/GaN quantum structures grown using epitaxial lateral overgrowth (ELOG) in correlation with their dislocation density levels and in comparison to steady state and time-resolved photoluminescence measurements. The results reveal that ELOG structures with decreasing mask stripe widths exhibit stronger electroabsorption performance. While keeping the ELOG window widths constant, compared to photoluminescence behavior, however, electroabsorption surprisingly exhibits the largest performance variation, making the electroabsorption the most sensitive to the mask stripe widths. This thesis work provides significant insight and important information for the optoelectronics of InGaN/GaN quantum structures and devices to better understand their field dependent nature.Item Open Access Excitonics of colloidal nanocrystals for next-generation optoelectronics(2016-05) Güzeltürk, BurakItem Open Access Graphene based optoelectronics in the visible spectrum(2015) Polat, Emre OzanGraphene, a two dimensional crystal of carbon atoms, emerges as a viable material for optoelectronics because of its electrically-tunable broadband optical properties. Optical response of graphene at visible and near infrared frequencies is defined by inter-band electronic transitions. By electrical tuning of the Fermi energy, the inter-band transitions can be blocked due to Pauli blocking. However, controlling inter-band transitions of graphene in the visible and near infrared wavelengths, has been an outstanding challenge. We developed a new device to control optical properties of graphene in the visible spectra. Our device relies on a graphene supercapacitor which includes two parallel graphene electrodes and electrolyte between them. Mutual gating between graphene electrodes enables us to fabricate optical modulators which can operate in the visible and near-infrared. Single layer graphene, however, has performance limits due to its small optical absorption defined by fundamental constants. We extend our method and we developed a new class of electrochromic devices using multilayer graphene. Fabricated devices undergo a reversible color change with the electrically controlled intercalation process. The electrical and optical characterizations of the electrochromic devices reveal the broadband optical modulation up to 55 per cent in the visible and near-infrared. Integration of semiconducting materials on unconventional substrates enables optoelectronic devices with new mechanical functionalities that cannot be achieved with wafer-based technologies. As a novel application, we demonstrate ultra thin electronic paper displays using the multilayer graphene as a reconfigurable optical medium. We anticipate that the developed devices would find wide range of applications in optoelectronics.Item Open Access Graphene-quantum dot hybrid optoelectronics at visible wavelengths(American Chemical Society, 2018) Salihoglu, O.; Kakenov, N.; Balci, O.; Balci, S.; Kocabas, C.With exceptional electronic and gate-tunable optical properties, graphene provides new possibilities for active nanophotonic devices. Requirements of very large carrier density modulation, however, limit the operation of graphene based optical devices in the visible spectrum. Here, we report a unique approach that avoids these limitations and implements graphene into optoelectronic devices working in the visible spectrum. The approach relies on controlling nonradiative energy transfer between colloidal quantum-dots and graphene through gate-voltage induced tuning of the charge density of graphene. We demonstrate a new class of large area optoelectronic devices including fluorescent display and voltage-controlled color-variable devices working in the visible spectrum. We anticipate that the presented technique could provide new practical routes for active control of light-matter interaction at the nanometer scale, which could find new implications ranging from display technologies to quantum optics.Item Open Access Hybrid J-Aggregate–graphene phototransistor(American Chemical Society, 2020) Balcı, Osman; Uzlu, Burkay; Yakar, Ozan; Polat, Nahit; Ari, O.; Tunç, İlknur; Kocabaş, Coşkun; Balcı, SinanJ-aggregates are fantastic self-assembled chromophores with a very narrow and extremely sharp absorbance band in the visible and near-infrared spectrum, and hence they have found many exciting applications in nonlinear optics, sensing, optical devices, photography, and lasing. In silver halide photography, for example, they have enormously improved the spectral sensitivity of photographic process due to their fast and coherent energy migration ability. On the other hand, graphene, consisting of single layer of carbon atoms forming a hexagonal lattice, has a very low absorption coefficient. Inspired by the fact that J-aggregates have carried the role to sense the incident light in silver halide photography, we would like to use Jaggregates to increase spectral sensitivity of graphene in the visible spectrum. Nevertheless, it has been an outstanding challenge to place isolated J-aggregate films on graphene to extensively study interaction between them. We herein noncovalently fabricate isolated J-aggregate thin films on graphene by using a thin film fabrication technique we termed here membrane casting (MC). MC significantly simplifies thin film formation of water-soluble substances on any surface via porous polymer membrane. Therefore, we reversibly modulate the Dirac point of graphene in the J-aggregate/graphene van der Waals (vdW) heterostructure and demonstrate an all-carbon phototransistor gated by visible light. Owing to the hole transfer from excited excitonic thin film to graphene layer, graphene is hole-doped. In addition, spectral and power responses of the all-carbon phototransistor have been measured by using a tunable laser in the visible spectrum. The first integration of J-aggregates with graphene in a transistor structure enables one to reversibly write and erase charge doping in graphene with visible light that paves the way for using J-aggregate/graphene vdW heterostructures in optoelectronic applications.Item Open Access Interfacial charge and energy transfer in van der Waals heterojunctions(John Wiley and Sons Inc, 2022-03) Hu, Zehua; Liu, Xue; Hernández-Martínez, Pedro Ludwig; Zhang, Shishu; Gu, Peng; Du, Wei; Xu, Weigao; Demir, Hilmi Volkan; Liu, Haiyun; Xiong, QihuaVan der Waals heterojunctions are fast-emerging quantum structures fabricated by the controlled stacking of two-dimensional (2D) materials. Owing to the atomically thin thickness, their carrier properties are not only determined by the host material itself, but also defined by the interlayer interactions, including dielectric environment, charge trapping centers, and stacking angles. The abundant constituents without the limitation of lattice constant matching enable fascinating electrical, optical, and magnetic properties in van der Waals heterojunctions toward next-generation devices in photonics, optoelectronics, and information sciences. This review focuses on the charge and energy transfer processes and their dynamics in transition metal dichalcogenides (TMDCs), a family of quantum materials with strong excitonic effects and unique valley properties, and other related 2D materials such as graphene and hexagonal-boron nitride. In the first part, we summarize the ultrafast charge transfer processes in van der Waals heterojunctions, including its experimental evidence and theoretical understanding, the interlayer excitons at the TMDC interfaces, and the hot carrier injection at the graphene/TMDCs interface. In the second part, the energy transfer, including both Förster and Dexter types, are reviewed from both experimental and theoretical perspectives. Finally, we highlight the typical charge and energy transfer applications in photodetectors and summarize the challenges and opportunities for future development in this field. © 2022 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.Item Open Access Liquid interface self-assembly of colloidal nanoplatelets for optoelectronics(Springer Singapore, 2022-10-28) Erdem, Onur; Demir, Hilmi VolkanIn this chapter, we discuss how liquid interface self-assembly can contribute to the utilization of colloidal semiconductor nanoplatelets in optoelectronics. Self-assembled nanoplatelet mono- or multilayers can be used as two-dimensional optically active waveguides, gain media of ultra-thin lasers, or energy transfer-based photosensitizers.Item Open Access Metal-semiconductor-metal ultraviolet photodetectors based on gallium nitride grown by atomic layer deposition at low temperatures(SPIE, 2014) Tekcan, B.; Ozgit Akgun, C.; Bolat, S.; Bıyıklı, Necmi; Okyay, Ali KemalProof-of-concept, first metal-semiconductor-metal ultraviolet photodetectors based on nanocrystalline gallium nitride (GaN) layers grown by low-temperature hollow-cathode plasma-assisted atomic layer deposition are demonstrated. Electrical and optical characteristics of the fabricated devices are investigated. Dark current values as low as 14 pA at a 30 V reverse bias are obtained. Fabricated devices exhibit a 15× UV/VIS rejection ratio based on photoresponsivity values at 200 nm (UV) and 390 nm (VIS) wavelengths. These devices can offer a promising alternative for flexible optoelectronics and the complementary metal oxide semiconductor integration of such devices. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride(SPIE, 1998) Serpengüzel, Ali; Aydınlı, Atilla; Bek, AlpanFabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride - air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.Item Open Access Monolayer diboron dinitride: direct band-gap semiconductor with high absorption in the visible range(American Physical Society, 2020) Demirci, Salih; Rad, Soheil Ershad; Kazak, Sahmurat; Nezir, S.; Jahangirov, SeymurWe predict a two-dimensional monolayer polymorph of boron nitride in an orthorhombic structure (o-B2N2) using first-principles calculations. Structural optimization, phonon dispersion, and molecular dynamics calculations show that o-B2N2 is thermally and dynamically stable. o-B2N2 is a semiconductor with a direct band gap of 1.70 eV according to calculations based on hybrid functionals. The structure has high optical absorption in the visible range in the armchair direction while low absorption in the zigzag direction. This anisotropy is also present in electronic and mechanical properties. The in-plane stiffness of o-B2N2 is very close to that of hexagonal boron nitride. The diatomic building blocks of this structure hint at its possible synthesis from precursors having B-B and N-N bonds.Item Open Access Near-unity emitting, widely tailorable, and stable exciton concentrators built from doubly gradient 2D semiconductor nanoplatelets(American Chemical Society, 2023-10-24) Liang, X.; Durmuşoğlu, E. G.; Lunina, M.; Hernandez-Martinez, P. L.; Valuckas, V.; Yan, F.; Lekina, Y.; Sharma, V. K.; Yin, T.; Ha, S. T.; Shen, Z. X.; Sun, H.; Kuznetsov, A.; Demir, Hilmi VolkanThe strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core–shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core–shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.Item Open Access Photocurrent generation in a metallic transition-metal dichalcogenide(American Physical Society, 2018) Mehmood, Naveed; Rasouli, Hamid Reza; Çakıroǧlu, Onur; Kasırga, T. SerkanPhotocurrent generation is unexpected in metallic 2D layered materials unless a photothermal mechanism is prevalent. Yet, typical high thermal conductivity and low absorption of the visible spectrum prevent photothermal current generation in metals. Here, we report photoresponse from two-terminal devices of mechanically exfoliated metallic 3R-NbS2 thin crystals using scanning photocurrent microscopy (SPCM) both at zero and finite bias. SPCM measurements reveal that the photocurrent predominantly emerges from metal/NbS2 junctions of the two-terminal device at zero bias. At finite biases, along with the photocurrent generated at metal/NbS2 junctions, now a negative photoresponse from all over the NbS2 crystal is evident. Among our results, we realized that the observed photocurrent can be explained by the local heating caused by the laser excitation. These findings show that NbS2 is among a few metallic materials in which photocurrent generation is possible.Item Open Access Plasmonically enhanced hot electorn based optoelectronic devices(2015-06) Atar, Fatih BilgeHot electron based optoelectronic devices have been regarded as cost-e ective candidates to their conventional counterparts. The efficiency of conventional optoelectronic devices that rely on semiconductor photo-absorbers are mainly limited by the energy bandgap of the semiconductor. On the other hand, hot electron devices can overcome this limitation via the \internal photoemission" mechanism. Absorbed photons give their energy to free electrons of the metal and these high energy (\hot") electrons can be used to generate photocurrent in proper device configurations. High optical re ection from metals has remained as the main drawback of this photocurrent generation scheme but this problem has recently been addressed by the use of surface plasmons. Optical energy can be tightly confined to a metal layer or metal nanostructures in the form of surface plasmons, and the decay of surface plasmons in metals generates hot electrons. In this work, we study mechanisms of surface plasmon excitation, surface plasmon decay, hot electron generation and hot electron photoemission for photocurrent generation. We demonstrate novel device architectures and plasmon excitation structures. We demonstrate the use of such layers for plasmon enhanced hot electron based photodetectors and photovoltaic devices. A metal-semiconductor Schottky junction diode structure is used as hot electron photodetector. A double metal-insulator-metal (MIM) architecture is proposed as a hot electron photovoltaic device. Full wave electromagnetic simulations of these device structures are conducted to provide insight into the surface plasmon assisted hot electron generation process and give future directions in this field.Item Embargo Promising anisotropic mechanical, electronic, and charge transport properties of 2D InN alloys for photocatalytic water splitting(Elsevier, 2023-11-30) Özbey, Doğukan Hazar; Kilic, M. E.; Durgun, EnginTwo-dimensional (2D) materials with unique physical properties lead to new possibilities in future nanomaterial-based devices. Among them, 2D structures suitable to be the solar-driven catalyst for water-splitting reactions have become excessively important since the demand for clean energy sources has increased. Apart from the conventional crystals with well-known symmetries, recent studies showed that materials with exotic decorations could possess superior features in these kinds of applications. In this respect, we report novel 2D tetrahexagonal (th-) InN crystal and its ordered alloys In0.33 X0.67N (X = Al, Ga) that can be utilized as effective catalysts for water splitting reactions. Proposed structures possess robust energetic, dynamical, thermal, and mechanical stability with a versatile mechanical response. After a critical tensile strain value, all monolayers exhibit strain-induced negative Poisson's ratio in a particular crystal direction, making them half-auxetic materials. The examined materials are indirect semiconductors with desired band gaps and band edge positions for water-splitting applications. Due to their structural anisotropy, they have direction-dependent mobility that can keep the photogenerated charge carriers separated by reducing their recombination probability, which boosts the photocatalytic process. High absorption capacity in the wide spectral range underlines their potential performance. The versatile mechanical, electronic, and optical properties of 2D th-InN and its alloys, together with their remarkable structural stability, indicate that they can appropriately be exploited in the future for water splitting applications.Item Open Access Selective-area high-quality germanium growth for monolithic integrated optoelectronics(Institute of Electrical and Electronics Engineers, 2012-03-02) Yu, H. Y.; Park, J. H.; Okyay, Ali Kemal; Saraswat, K. C.Selective-area germanium (Ge) layer on silicon (Si) is desired to realize the advanced Ge devices integrated with Si very-large-scale-integration (VLSI) components. We demonstrate the area-dependent high-quality Ge growth on Si substrate through SiO 2 windows. The combination of area-dependent growth and multistep deposition/hydrogen annealing cycles has effectively reduced the surface roughness and the threading dislocation density. Low root-mean-square surface roughness of 0.6 nm is confirmed by atomic-force-microscope analysis. Low defect density in the area-dependent grown Ge layer is measured to be as low as 1 × 10 7cm -2 by plan-view transmission-electron-miscroscope analysis. In addition, the excellent metal-semiconductor-metal photodiode characteristics are shown on the grown Ge layer to open up a possibility to merge Ge optoelectronics with Si VLSI.Item Open Access Spatially Selective Assembly of Quantum Dot Light Emitters in an LED Using Engineered Peptides(American Chemical Society, 2011-02-23) Demir, Hilmi Volkan; Seker, U. O. S.; Zengin, G.; Mutlugun, E.; Sari, E.; Tamerler, C.; Sarikaya, M.Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.Item Open Access Strain engineering of electronic and optical properties of monolayer diboron dinitride(American Physical Society, 2021-11-29) Demirci, Salih; Rad, Soheil Ershad; Jahangirov, SeymurWe studied the effect of strain engineering on the electronic, structural, mechanical, and optical properties of orthorhombic diboron dinitride (o-B2N2) through first-principles calculations. The 1.7-eV direct band gap observed in the unstrained o-B2N2 can be tuned up to 3 eV or down to 1 eV by applying 12% tensile strain in armchair and zigzag directions, respectively. Ultimate strain values of o-B2N2 were found to be comparable with that of graphene. Our calculations revealed that the partial alignment of the band edges with the redox potentials of water in pristine o-B2N2 can be tuned into a full alignment under the armchair and biaxial tensile strains. The anisotropic charge carrier mobility found in o-B2N2 prolongs the average lifetime of the carrier drift, creating a suitable condition for photoinduced catalytic reactions on its surface. Finally, we found that even in extreme straining regimes, the highly anisotropic optical absorption of o-B2N2 with strong absorption in the visible range is preserved. Having strong visible light absorption and prolonged carrier migration time, we propose that strain engineering is an effective route to tune the band gap energy and band alignment of o-B2N2 and turn this two-dimensional material into a promising photocatalyst for efficient hydrogen production from water splitting.Item Embargo Two-dimensional molecular crystal Sb₂O₃ for electronics and optoelectronics(AIP Publishing LLC, 2024-06) Yu, Jing; Han, Wei; Ong, Ruey Jinq; Shi, Jing-Wen; Suleiman, Abdulsalam Aji; Liu, Kailang; Ling, Francis Chi-ChungAs a two-dimensional (2D) inorganic molecular van der Waals crystal, Sb₂O₃ has been widely recognized as an excellent dielectric and encapsulation material due to its wide bandgap, high dielectric constant (kappa), and remarkably high air stability. Considering the significance and potential application of Sb₂O₃ in future electronic devices, it is valuable to summarize its recent advancements. In this review, we present the latest progress on 2D Sb₂O₃ flakes and films, encompassing synthesis methods, physical properties, and device applications. First, preparation strategies such as chemical vapor deposition, vertical physical vapor deposition, thermal evaporation deposition, liquid metal synthesis, and atomic layer deposition growth routes are highlighted. Subsequently, the mechanical properties and the phase transition mechanisms of 2D Sb₂O₃ are presented. Moreover, device applications, including encapsulation layer, photodetector, and gate dielectric, are demonstrated. Finally, we outline the future challenges and research priorities of 2D Sb₂O₃ materials.