Graphene-quantum dot hybrid optoelectronics at visible wavelengths
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
With exceptional electronic and gate-tunable optical properties, graphene provides new possibilities for active nanophotonic devices. Requirements of very large carrier density modulation, however, limit the operation of graphene based optical devices in the visible spectrum. Here, we report a unique approach that avoids these limitations and implements graphene into optoelectronic devices working in the visible spectrum. The approach relies on controlling nonradiative energy transfer between colloidal quantum-dots and graphene through gate-voltage induced tuning of the charge density of graphene. We demonstrate a new class of large area optoelectronic devices including fluorescent display and voltage-controlled color-variable devices working in the visible spectrum. We anticipate that the presented technique could provide new practical routes for active control of light-matter interaction at the nanometer scale, which could find new implications ranging from display technologies to quantum optics.