Selective-area high-quality germanium growth for monolithic integrated optoelectronics
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Selective-area germanium (Ge) layer on silicon (Si) is desired to realize the advanced Ge devices integrated with Si very-large-scale-integration (VLSI) components. We demonstrate the area-dependent high-quality Ge growth on Si substrate through SiO 2 windows. The combination of area-dependent growth and multistep deposition/hydrogen annealing cycles has effectively reduced the surface roughness and the threading dislocation density. Low root-mean-square surface roughness of 0.6 nm is confirmed by atomic-force-microscope analysis. Low defect density in the area-dependent grown Ge layer is measured to be as low as 1 × 10 7cm -2 by plan-view transmission-electron-miscroscope analysis. In addition, the excellent metal-semiconductor-metal photodiode characteristics are shown on the grown Ge layer to open up a possibility to merge Ge optoelectronics with Si VLSI.