Design and synthesis of self-assembling peptides for fabrication of functional nanomaterials

Available
The embargo period has ended, and this item is now available.

Date

2016-12

Editor(s)

Advisor

Akkaya, Engin Umut

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
30
downloads

Series

Abstract

Self-assembling peptides are a class of supramolecular polymers, which exploit noncovalent interactions such as hydrogen bonding, hydrophobic, electrostatic, charge-transfer complex, π-π, and van der Waals interactions to generate well-defined supramolecular nanostructures including nanospheres, nanosheets, nanotubes, and nanofibers. These versatile peptide-based supramolecular nanomaterials have been utilized in variety of applications including catalysis, sensing, light harvesting, optoelectronic, bioelectronic and tissue engineering. In this thesis, use of supramolecular peptide nanofibers formed by specially designed short peptide sequences that can form sheet-like hydrogen bonded structures for controlled synthesis of nanometer scale functional materials were explored. Specifically, n-type and p-type β-sheet forming short peptide sequences were synthesized, which assemble separately into well-ordered nanofibers in aqueous media. These p-type and n-type nanofibers coassemble via hydrogen bonding and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This smart molecular design ensures alternating arrangement of D and A chromophores within n/p-coassembled supramolecular nanowires. Supramolecular n/p- coassembled nanowires were found to be formed by alternating A-D-A unit cells having an association constant of (KA) of 5 x 105 M-1. Moreover, I designed and synthesized β-sheet forming peptide nanofibers to fabricate different metal and metal oxide nanostructures in highly controlled manner using wet chemistry and atomic layer deposition techniques. These hybrid organic-inorganic nanostructures were employed in model Suzuki coupling, alkyne-azide cycloaddition and hydrolysis of ammonia borane reactions.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)

Language

English

Type