Browsing by Subject "Mirrors"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Item Open Access 1.3 μm GaAs based resonant cavity enhanced Schottky barrier internal photoemission photodetector(IEEE, Piscataway, NJ, United States, 2000) Necmi, B.; Kimukin, I.; Özbay, Ekmel; Tuttle, G.GaAs based photodetectors operating at 1.3 μm that depend on internal photoemission as the absorption mechanism were fabricated. Quantum efficiency (QE) was increased using resonant cavity enhancement (RCE) effect.Item Open Access Analysis of the complex light field generated by a deflectable mirror array device(SPIE, 2006) Ulusoy, Erdem; Onural, Levent; Özaktaş, Haldun M.An exact analysis of the scalar coherent monochromatic light field produced by a deflectable mirror array device is presented. The three-dimensional light field is related to the tilt angles of the mirrors. The first Rayleigh-Sommerfeld diffraction formula is used to model the diffraction. The analysis is carried out based on the assumption that the mirrors can be tilted with continuously varying angles, so the field produced by a finite (discrete) set of possible tilt angles is included as a special case.Item Open Access Determination of Plasma Temperature of Copper Vapour laser(Cambridge University Press, 2016) Namnabat, M.; Behrouzinia, S.; Moradi, A. R.; Khorasani, K.The output power and the temperature profile of a copper vapour laser were investigated versus frequency with various kinds of back mirror in its resonator cavity. A semi-experimental method was used for measuring the plasma temperature and obtaining the temperature profile with various back mirrors. The obtained plasma temperature through this method has good agreement with the operational temperature of the laser.Item Open Access Fabrication of high-speed resonant cavity enhanced schottky photodiodes(Institute of Electrical and Electronics Engineers, 1997-05) Özbay, Ekmel; Islam, M. S.; Onat, B.; Gökkavas, M.; Aytür, O.; Tuttle, G.; Towe, E.; Henderson, R. H.; Ünlü, M. S.We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The top-illuminated RCE detector is constructed by integrating a Schottky contact, a thin absorption region (In0.8Ga0.92As) and a distributed AlAs-GaAs Bragg mirror. The Schottky contact metal serves as a high-reflectivity top mirror in the RCE detector structure. The devices were fabricated by using a microwave-compatible fabrication process. The resulting spectral photo response had a resonance around 895 nm, in good agreement with our simulations. The full-width-at-half-maximum (FWHM) was 15 nm, and the enhancement factor was in excess of 6. The photodiode had an experimental setup limited temporal response of 18 ps FWHM, corresponding to a 3-dB bandwidth of 20 GHz.Item Open Access Femtosecond optical parametric oscillator based on periodically poled KTiOPO4(1998-01-01) Kartaloğlu, T.; Köprülü, K. G.; Aytür, O.; Sundheimer, M.; Risk, W. P.We report a femtosecond optical parametric oscillator based on a periodically poled KTiOPO4 crystal for which quasi-phase matching is achieved with a 24-μm poling period. The singly resonant parametric oscillator, synchronously pumped by a Ti:sapphire laser at a wavelength of 758 nm, generates a signal at 1200 nm and an idler at 2060 nm. The maximum signal power conversion efficiency of the device is 22% with a pump depletion of 69%. We tune the signal wavelength over a 200-nm band by changing the cavity length. In addition, pump wavelength tuning provides output tunability in the 1000-1235-nm range.Item Open Access Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators(Optical Society of America, 1994) Özaktaş, Haldun M.; Mendlovic, D.The complex amplitude distributions on two spherical reference surfaces of given curvature and spacing are simply related by a fractional Fourier transform. The order of the fractional Fourier transform is proportional to the Gouy phase shift between the two surfaces. This result provides new insight into wave propagation and spherical mirror resonators as well as the possibility of exploiting the fractional Fourier transform as a mathematical tool in analyzing such systems.Item Open Access High-performance ALGaN-based visible-blind resonant cavity enhanced Schottky photodiodes(Materials Research Society, 2003-04) Kimukin, İbrahim; Bıyıklı, Necmi; Kartaloğlu, Tolga; Aytür, Orhan; Özbay, EkmelWe have designed, fabricated and tested resonant cavity enhanced visible-blind AlGaN-based Schottky photodiodes. The bottom mirror of the resonant cavity was formed with a 20 pair AlN/AlGaN Bragg mirror. The devices were fabricated using a microwave compatible fabrication process. Au and indium-tin-oxide (ITO) thin films were used for Schottky contact formation. ITO and Au-Schottky devices exhibited resonant peaks with 0.153 A/W and 0.046 A/W responsivity values at 337 nm and 350 nm respectively. Temporal high-speed measurements at 357 nm resulted in fast pulse responses with pulse widths as short as 77 ps. The fastest UV detector had a 3-dB bandwidth of 780 MHz.Item Open Access High-performance ITO-AlAs/GaAs based resonant cavity enhanced Schottky photodiodes(IEEE, 1999) Özbay, Ekmel; Bıyıklı, Necmi; Kimukin, İbrahim; Aytür, OrhanThe fabrication of ITO (indium tin oxide)-AlAs-based resonant cavity enhanced Schottky photodiodes was examined. The device structure was designed to achieve a low-loss cavity around a 840 nm optical communication window. The layers were grown by molecular beam epitaxy on a GaAs substrate. Photoresponse measurements were carried out in 750-900 nm wavelength range using a tungsten-halogen projection lamp as the light source and single pass monochromator. Although the discrepancy between the experiment and theory was quite large, a nearly parallel enhancement of the initial efficiency values was observed as a function of the top distributed Bragg reflector pair.Item Open Access High-speed 1.55 μm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p-i-n photodiodes(American Institute of Physics, 2004) Butun, B.; Bıyıklı, Necmi; Kimukin, I.; Aytur, O.; Özbay, Ekmel; Postigo, P. A.; Silveira, J. P.; Alija, A. R.The 1.55 μm high-speed operation of GaAs-based p-i-n photodiodes was demonstrated and their design, growth and fabrication were discussed. A resonant-cavity-detector structure was used to selectively enhance the photoresponse at 1.55 μm. The bottom mirror of the resonant cavity was formed by a highly reflecting 15-pair GaAs/AlAs Bragg mirror and molecular-beam epitaxy was used for wafer growth. It was found that the fabricated devices exhibited a resonance of around 1548 nm and an enhancement factor of 7.5 was achieved when compared to the efficiency of a single-pass detector.Item Open Access High-speed transparent indium-tin-oxide based resonant cavity Schottky photodiode with Si/sub 3/N/sub 4//SiO/sub 2/ top Bragg mirror(IEEE, Piscataway, NJ, United States, 2000) Bıyıklı, Necmi; Kimukin, I.; Aytur, O.; Özbay, Ekmel; Gokkavas, M.; Unlu, S.Photodetectors demonstrating high bandwidth-efficiency (BWE) products are required for high-performance optical communication and measurement systems. For conventional photodiodes the BWE product is limited due to the bandwidth-efficiency trade-off. A resonant cavity enhanced (RCE) photodetection scheme offers the possibility to overcome this limitation. Very high BWE products are achieved using Schottky and p-i-n type RCE photodiodes, which could not be reached with conventional detector structures. Even better performances should be possible for RCE Schottky photodiodes if one can get rid of the optical losses and scattering caused by the Schottky metal, Au, which also serves as the top mirror of the resonant cavity. The transparent, low resistivity material indium-tin-oxide (ITO) is a potential alternative to thin semi-transparent Au as a Schottky-barrier contact material. We report our work on high-performance ITO-based RCE Schottky photodiodes.Item Open Access Imaging flaws close to surface using focused surface acoustic waves(IEEE, 1986-11) Köymen, Hayrettin; Atalar, Abdullah; Çiloğlu, T.; Önder, Murat; Uzel, Ç.; Yavuz, H.The resolving power and detection ability of the focused surface acoustic wave (SAW) imaging modality is investigated in this paper. In this mode of imaging, conical bulk acoustic waves are used to generate and focus leaky surface acoustic waves on smooth surfaces of materials. Imaging systems built using this technique has diffraction limited focusing property. An imaging system using this focusing principle has been built, operating at 1.5 and 20 MHz. A slow mechanical scanning system controlled by a personal computer scans the surface of the object, and the data is acquired by the computer to generate a color or a black and white image on its graphic screen. The results of the initial experiments show that the inaging system is very sensitive to the grain structure and possible residual stresses on the surface of the object. It can resolve subsurface gratings of spacing less than a SAW wavelength very close to surface. The imaging system is inherently zero background, providing a high sensitivity not found in similar systems.Item Open Access Method to enlarge the hologram viewing window using a mirror module(2009) Kang H.; Ohmura, N.; Yamaguchi, T.; Yoshikawa H.; Kim, S.-C.; Kim, E.-S.A liquid crystal panel for a video projector is often used for holographic television. However, its pixel size and pixel number are not enough for practical holographic 3-D display. Therefore, a multipanel configuration is generally used to increase the viewing window and displayed image size, and many spatial light modulators should be used in them. We propose a novel method to increase the viewing window of a holographic display system. The proposed method, which is implemented by using a mirror module and 4-f lens set, is to reconfigure the beam shape reflected by a spatial light modulator. The equipment is applied to a holographic display system, which has only a single spatial light modulator; a hologram could be displayed in a wider viewing window by the equipment than that of the conventional method. By the proposed method, the resolution of the reconfigured spatial light modulator has double resolution in the horizontal direction. Inversely, the vertical resolution is decreased. Even if the vertical resolution is decreased, a viewer could get 3-D effect because humans get more 3-D information in the horizontal direction. We have experimented using a liquid crystal on silicon (LcOS), whose resolution is 4096×2160pixels. The reconfigured resolution by the mirror module is 8192×1080pixels. From the experiments, the horizontal viewing window is almost two times wider than that without the mirror module. As a result, the hologram can be observed binocularly. © 2009 Society of Photo-Optical Instrumentation Engineers.Item Open Access Phase-matched self-doubling optical parametric oscillator(Optical Society of America, 1997-03-01) Kartaloğlu, T.; Köprülü, K. G.; Aytür, O.We report a synchronously pumped intracavity frequency-doubled optical parametric oscillator that employs a single KTiOPO4 crystal for both parametric generation and frequency doubling. Both nonlinear processes are phase matched for the same direction of propagation in the crystal. The parametric oscillator, pumped by a femtosecond Ti:sapphire laser at a wavelength of 745 nm, generates a green output beam at 540 nm with a 29% power conversion efficiency. Angle tuning in conjunction with pump wavelength tuning provides output tunability in the 530-585-nm range.Item Open Access Photoluminescence from a VCSEL structure a-SiNx:H microcavity(IEEE, 1999) Serpengüzel, A.; Darici, Y.Microcavity effects on the photoluminescence (PL) of porous Si has already been reported. Recently, we have observed visible and near infrared (IR) PL from hydrogenated amorphous Si nitride (a-SiNx:H) grown by low temperature PECVD. We have also reported the enhancement and inhibition of PL in an a-SiNx:H microcavity formed with metallic mirrors. The a-SiNx:H used in the microcavity was grown both with and without ammonia (NH/sub 3/). For the Si rich a-SiNx:H grown without NH/sub 3/, the PL is in the red-near IR. For the N rich a-SiNx:H grown with NH/sub 3/, the PL is in the blue-green. In this paper, we report on the bright and spectrally pure PL of a-SiNx:H in a VCSEL structure microcavity.Item Open Access Resonant cavity-enhanced detectors embedded in photonic crystals(IEEE, 1996) Temelkuran, Burak; Özbay, EkmelSummary form only given. We demonstrate the resonant-cavity-enhanced effect by placing microwave detectors in a layer-by-layer photonic crystal. We used the output of a network analyzer as the microwave source, and fed the output to a horn antenna to obtain EM waves. The crystal was then replaced in the beam-path of the EM wave, and the electric field inside the cavity was measured by a probe that consisted of a monopole antenna. The output of the antenna was measured by use of two different techniques: network analyzer and microwave detector within the cavity. The first cavity structure was similar to a one-dimensional Fabry-Perot resonator made of two mirrors separated by a distance.Item Open Access A self-doubling optical parametric oscillator based on aperiodically-poled lithium niobate(IEEE, 2001) Kartaloǧlu, Tolga; Figen, Ziya Gürkan; Aytür, OrhanA self-doubling optical parametric oscillator (SDOPO) having one-dimensional aperiodic grating structure based on a LiNbO3 crystal was constructed. The structure was designed to quasi-phase-match both second harmonic generation (SHG) and optical parametric oscillation (OPO) processes. The grating structure contained in the LiNbO3 crystal was based on the construction of a function by summing up two cosine functions with arbitrary phase and amplitude.Item Open Access Signal processing problems and algorithms in display side of 3DTV(IEEE, 2006-10) Ulusoy, E.; Esmer, Gökhan Bora; Özaktaş, Haldun M.; Onural, Levent; Gotchev, A.; Uzunov, V.Two important signal processing problems in the display side of a holographic 3DTV are the computation of the diffraction field of a 3D object from its abstract representation, and determination of the best display configuration to synthesize some intended light distribution. To solve the former problem, we worked on the computation of ID diffraction patterns from discrete data distributed over 2D space. The problem is solved using matrix pseudo-inversion which dominates the computational complexity. Then, the light field synthesis problem by a deflectable mirror array device (DMAD) is posed as a constrained linear optimization problem. The formulation makes direct application of common optimization algorithms quite easy. The simulations indicate that developed methods are promising. ©2006 IEEE.Item Open Access Super-radiant surface emission from a quasi-cavity hot electron light emitter(Springer New York LLC, 1999) O'Brien, A.; Balkan, N.; Boland-Thoms, A.; Adams, M.; Bek, A.; Serpengüzel, A.; Aydınlı, A.; Roberts, J.The Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure (HELLISH-1) device is a novel surface emitter which utilises hot carrier transport parallel to the layers of a Ga1 - xAlxAs p-n junction incorporating a single GaAs quantum well on the n-side of the junction plane. Non-equilibrium electrons are injected into the quantum well via tunnelling from the n-layer. In order to preserve the charge neutrality in the depletion region, the junction undergoes a self-induced internal biasing. As a result the built-in potential on the p-side is reduced and hence the injection of non-equilibrium holes into the quantum well in the active region is enhanced. The work presented here shows that a distributed Bragg reflector grown below the active region of the HELLISH device increases the emitted light intensity by two orders of magnitude and reduces the emission line-width by about a factor of 3 in comparison with the original HELLISH-1 structure. Therefore, the device can be operated as an ultrabright emitter with higher spectral purity.Item Open Access Ultrafast and highly efficient resonant cavity enhanced photodiodes(SPIE, 2003-09) Özbay, Ekmel; Kimukin, İbrahim; Bıyıklı, NecmiIn this talk, we will review our research efforts on resonant cavity enhanced (RCE) high-speed high-efficiency photodiodes (PDs) operating in the 1st and 3rd optical communication windows. Using a microwave compatible planar fabrication process, we have designed and fabricated GaAs and InGaAs based RCE photodiodes. For RCE GaAs Schottky type photodiodes, we have achieved peak quantum efficiencies of 50% and 75% with semi-transparent (Au) and transparent (indium-tin-oxide) Schottky layers respectively. Along with 3-dB bandwidths of 50 and 60 GHz, these devices exhibit bandwidth-efficiency (BWE) products of 25 GHz and 45 GHz respectively. By using a postprocess recess etch, we tuned the resonance wavelength of an RCE InGaAs PD from 1605 to 1558 nm while keeping the peak efficiencies above 60%. The maximum quantum efficiency was 66% at 1572 nm which was in good agreement with our theoretical calculations. The photodiode had a linear response up to 6 mW optical power, where we obtained 5 mA photocurrent at 3 V reverse bias. The photodetector had a temporal response of 16 psec at 7 V bias. After system response deconvolution, the 3-dB bandwidth of the device was 31 GHz, which corresponds to a bandwidth-efficiency product of 20 GHz.Item Open Access V(Z) of the surface acoustic wave focusing system(IEEE, 1986-11) Atalar, Abdullah; Köymen, HayrettinIt is possible to define a V(Z) function for the surface acoustic wave (SAW) focusing system for a class of reflectors similar to that defined in acoustic microscopy. In this case V(Z) is a function which relates the transducer output voltage to the distance between the focal point and the reflection line. It is possible to express V(Z) in an analytical expression using angular spectrum techniques. V(Z) is measured for straight edge reflectors forming various angles with the surface. V(2) of straight step reflectors are investigated. These curves show a dependence on the type of reflector. The experiments are performed at 1.5 MHz in conjunction with a computerized data acquisition system. The phase information is also recorded in all these measurements in addition to the amplitude. It is possible to get an inversion of V(Z) to get the SAW reflection coefficient at a straight discontinuity.