Imaging flaws close to surface using focused surface acoustic waves
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
The resolving power and detection ability of the focused surface acoustic wave (SAW) imaging modality is investigated in this paper. In this mode of imaging, conical bulk acoustic waves are used to generate and focus leaky surface acoustic waves on smooth surfaces of materials. Imaging systems built using this technique has diffraction limited focusing property. An imaging system using this focusing principle has been built, operating at 1.5 and 20 MHz. A slow mechanical scanning system controlled by a personal computer scans the surface of the object, and the data is acquired by the computer to generate a color or a black and white image on its graphic screen. The results of the initial experiments show that the inaging system is very sensitive to the grain structure and possible residual stresses on the surface of the object. It can resolve subsurface gratings of spacing less than a SAW wavelength very close to surface. The imaging system is inherently zero background, providing a high sensitivity not found in similar systems.