Browsing by Subject "Fabrication"
Now showing 1 - 20 of 41
- Results Per Page
- Sort Options
Item Restricted 1970 ve 2000 yılları arası Türkiye’de broiler Sektörü(Bilkent University, 2022) Uçur, Ahmet Tarık; Özcan, Buğra Kerem; Akan, Cenker; Kağanarslan, Diyar; Can, Efe TunaBroiler sektörüne Türkiye’ye 1950’li yıllarda giriş yapmış, Türkiye hayvancılık sektörünün önemli alt kollarından biri olmuştur. Broiler sektörü, 1970’li yıllara kadar durgun bir hareket gösterse de 1970’li yıllardan sonra gerek köyden kente geçişin hızlanmasıyla gerekse belirli özel müteşebbislerin katkılarıyla gelişmiştir. Bu durumun sonucunda tavuk eti diğer etlere göre daha çok tercih edilen bir et türü olmuştur. Bu sayede günümüze kadar hızla gelişen ve birçoğumuzun hayatında önemli yer tutan bir sektör haline gelmiştir. 1970 ve 2000 yılları arasında Türkiye’de broiler sektörü hızla gelişmiş, bu yıllar arasında broiler sektörü modernleştirilmiş ve üretim arttırılmıştır. Broiler sektörü, Türkiye’nin en önemli hayvancılık faaliyetlerinden biri olmasının yanında, ülke ekonomisine de yaptığı ihracatlarla büyük katkı sağlamıştır. Hemen hemen her birimizin hayatında oldukça büyük ve önemli bir yer tutan Broiler sektörünün detaylıca ve kapsamlıca incelenmesi Türkiye’nin sosyal tarihine bakışımızda önemli bir basamak olacaktır.Item Open Access Analytic thermal modeling for dc to midrange modulation frequency response for thin film high-Tc superconductive edge-transition bolometers(OSA Publishing, 2001-03-01) Fardmanesh, M.Thin-film superconductive edge-transition bolometers are modeled with a one-dimensional analytic thermal model with joule heating, film and substrate materials, and the physical interface effects taken into consideration. The results from the model agree well with the experimental results of samples made of large-meander-line Yba(2)Cu(3)O(7-x) films on crystalline SrTiO3, LaAlO3, and MgO substrates up to 100 kHz, the limits of the experimental setup. Compared with the results of the SrTiO3 substrate samples, the results from the model of the LaAlO3 and the MgO substrate samples deviate slightly from the measured values at very low modulation frequencies (below similar to 10 Hz). The deviation increases for higher thermal-conductive substrate materials. When the model was used, the substrate absorption and the thermal parameters of the devices could also be investigated. (C) 2001 Optical Society of AmericaItem Open Access CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving(Institute of Physics Publishing, 2016-10) Serhatlioglu, M.; Ortaç, B.; Elbuken, C.; Bıyıklı, Necmi; Solmaz, M. E.In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.Item Open Access A combinatorial buffered oxide etching method for high-power cladding light stripper(Institute of Electrical and Electronics Engineers Inc., 2019) Yapar-Yıldırım, Elif; Karatutlu, Ali; Balk, Ekin Teslime; Midilli, Yakup; Ortaç, BülendHigh-power fiber lasers have been applied in many areas due to their advantages such as high beam quality, compact structure, flexibility and high efficiency. However, the absorption of the pump light is limited and a residual pumped light keeps propagating in the cladding. This residual pumped light affects the beam quality and can damage the whole system. Therefore, an efficient removal of excess high-power cladding light is critical for the safe operation of the high-power fiber lasers and high beam quality [1]. Adding a new structure to the cladding of the fiber leading to interrupt total internal reflection in the clad and scatter away the unwanted pump light is the generalized approach for a cladding light stripper (CLS) device fabrication. Also, it is important to scatter all the unwanted light uniformly along the CLS. Etching the fiber for surface damage and recoating the fiber [2] are two general methods for stripping the cladding light [3-5].Item Open Access Design and realization of a fully on-chip High-Q resonator at 15 GHz on silicon(Institute of Electrical and Electronics Engineers, 2008-12) Melik, R.; Perkgoz, N. K.; Unal, E.; Dilli, Z.; Demir, Hilmi VolkanWe develop and demonstrate an on-chip resonator working at 15 GHz with a high quality factor (Q-factor) of 93.81 while only requiring a small chip size of 195 mu m x 195 mu m on Si by using our new design methodology. In our design, unlike previous approaches, we avoid the need for any external capacitance for tuning; instead, we utilize the film capacitance as the capacitor of the LC tank circuit and realize a fully on-chip resonator that shows a strong transmission dip of > 30 dB on resonance as required for telemetric-sensing applications. We present the design, theory, methodology, microfabrication, experimental characterization, and theoretical analysis of these resonators. We also demonstrate that the experimental results are in excellent agreement with the theoretical (both analytical and numerical) results. Based on our proof-of-concept demonstration, such high-Q on-chip resonators hold great promise for use in transmissive telemetric sensors.Item Open Access Design, fabrication and characterization of high-performance solarblind AlGaN photodetectors(SPIE, 2005) Özbay, EkmelDesign, fabrication, and characterization of high-performance AlxGal-xN-based photodetectors for solar-blind applications are reported. AlxGal-xN heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The resulting solar-blind AlGaN detectors exhibited low dark current, high detectivity, and high bandwidth.Item Open Access Enhanced photoresponse of conformal TiO2/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition(AVS Science and Technology Society, 2015) Haider A.; Cansizoglu, H.; Cansizoglu, M. F.; Karabacak, T.; Okyay, Ali Kemal; Bıyıklı, NecmiIn this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO2) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO2 on Ag NRs via ALD. Following the growth of TiO2 on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 102 under a reverse bias of 3 V. © 2014 American Vacuum Society.Item Open Access Experimental realization of a high-contrast grating based broadband quarter-wave plate(Optical Society of America, 2012-12-03) Mutlu, M.; Akosman, A. E.; Kurt, G.; Gokkavas, M.; Özbay, EkmelFabrication and experimental characterization of a broadband quarter-wave plate, which is based on two-dimensional and binary silicon high-contrast gratings, are reported. The quarter-wave plate feature is achieved by the utilization of a regime, in which the proposed grating structure exhibits nearly total and approximately equal transmission of transverse electric and transverse magnetic waves with a phase difference of approximately pi/2. The numerical and experimental results suggest a percent bandwidth of 42% and 33%, respectively, if the operation regime is defined as the range for which the conversion efficiency is higher than 0.9. A compact circular polarizer can be implemented by combining the grating with a linear polarizer. (C) 2012 Optical Society of AmericaItem Open Access Fabrication and characterization of liquid metal-based micro-electromechanical DC-contact switch for RF applications(CRC Press, 2012) Çağatay, Engin; Noyan, Mehmet Alican; Damgaci, Y.; Cetiner, B. A.; Bıyıklı, NecmiWe demonstrate that room-temperature liquid metal alloy droplets of Eutectic Gallium Indium (EGaIn) and Gallium Indium Tin alloy (Galinstan) can be actuated using electro-wetting-on-dielectric (EWOD) effect. With the application of 80-100V across the actuation electrode and ground electrode, the metallic liquid droplets were observed to be actuated. We have studied the actuation characteristics using different electrode architectures in open-air configuration as well as in encapsulated microfluidic channel test-beds. The resulting microfluidic DC actuation might potentially be used for RF switching applications.Item Open Access Fabrication of 15- $\mu$ m pitch $640{\rm ×}512$ InAs/GaSb type-II superlattice focal plane arrays(Institute of Electrical and Electronics Engineers Inc., 2019) Oğuz, Fikri; Arslan, Y.; Ülker, E.; Bek, A.; Özbay, EkmelWe present the fabrication of large format 640 × 512, 15-μm pitch, mid-wave infrared region (MWIR) InAs/GaSb type-II superlattice (T2SL) focal plane array (FPA). In this report, the details of device design and fabrication processes are withheld adhering to the common practice of most of the manufactures and developers because of the strategic importance; however, information about fabrication processes of T2SLs FPA is presented to a certain extent. Comparison of etching techniques, passivation materials and methods, and substrate thinning (mechanical and chemical) is given besides of details regarding the standard ohmic contact and indium (In) bump formations. Morphological investigations of fabrication step are included. Large area pixels, 220 μm × 220 μm, fabricated by different etching methods and passivation materials/methods are compared in terms of dark current levels. Wet passivation with (NH 4 ) 2 S is discussed in terms of morphological investigations, and dark current results are compared with untreated samples. Large area pixel level characterizations as well as image level benchmarking of mechanical and chemical substrate thinning are reported. Effect of GaSb substrate on device performance and the way of reducing stress of In bumps are revealed. The importance of complete substrate removal is demonstrated through FPA images.Item Open Access Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography(Elsevier, 2016) Ali, Z.; Türeyen, E. Buğra; Karpat, Yiğit; Çakmakcı, MelihFabrication of micro needles, which reduce pain during insertion and lessen tissue injury, has recently attracted great interest. Different manufacturing systems have been utilized for the advancement of micro needles such as two-photon photo polymerization, bulk lithography, droplet-borne air blowing and injection molding [1]. This paper proposes a micro fabrication process for polymer micro needles, using DLP based projection-based stereo lithography that is capable of fabricating micro-needles using biocompatible polymers. The fabrication in the experimental setup is performed with continuous movement of the platform in the vertical direction hence good surface quality is obtained. The influence of polymerization time, light intensity of DLP projector and chemical composition of the resins on the production speed and the geometrical accuracy of the micro needles have been studied. The length and the tip diameter of the micro needle are shown to be controlled through these factors. The length and tip diameter of the fabricated micro needles were observed using SEM and optical microscope and measured to be around 520 μm and 40 μm, respectively. The results indicate that polymer micro needles with appropriate geometry can be fabricated using this technique. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.Item Open Access Fabrication of supramolecular n/p-nanowires via coassembly of oppositely charged peptide-chromophore systems in aqueous media(American Chemical Society, 2017-07) Khalily, M. A.; Bakan, G.; Kucukoz, B.; Topal, A. E.; Karatay, A.; Yaglioglu, H. G.; Dana, A.; Güler, Mustafa O.Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack π-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type β-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A-D-A unit cells having an association constant (KA) of 5.18 × 105 M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.Item Open Access Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications(SPIE, 2017) Serhatlioglu, Murat; Elbuken, Çağlar; Ortac, Bülend; Solmaz, Mehmet E.Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems. © 2017 SPIE.Item Open Access High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current(Pergamon Press, 2005-01) Tut, T.; Bıyıklı, Necmi; Kimukin, I.; Kartaloglu, T.; Aytur, O.; Unlu, M. S.; Özbay, EkmelAl0.38Ga0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solarblind detectors displayed extremely low dark current values: 30 μm diameter devices exhibited leakage current below 3fA under reverse bias up to 12V. True solar-blind operation was ensured with a sharp cut-off around 266nm. Peak responsivity of 147mA/W was measured at 256nm under 20V reverse bias. A visible rejection more than 4 orders of magnitude was achieved. The thermally-limited detectivity of the devices was calculated as 1.8 × 1013cm Hz1/2W-1. Temporal pulse response measurements of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1 GHz bandwidth. A bandwidth-efficiency product of 2.9GHz was achieved with the AlGaN Schottky photodiodes. © 2004 Elsevier Ltd. All rights reserved.Item Open Access High-performance solar-blind AlGaN photodetectors(SPIE, 2005) Özbay, Ekmel; Tut, Turgut; Bıyıklı, N.Design, fabrication, and characterization of high-performance Al xGa1-xN-based photodetectors for solar-blind applications are reported. AlxGa1-xN heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3 fA leakage currents at 6 V and 12 V reverse bias were measured on p-i-n and Schottky photodiode samples respectively. The excellent current-voltage (I-V) characteristics led to a detectivity performance of 4.9×1014 cmHz1/2W-1. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.15 A/W and 0.11 A/W peak responsivity values at 267 nm and 261 nm respectively. All samples displayed true solar-blind response with cut-off wavelengths smaller than 280 nm. A visible rejection of 4×104 was achieved with Schottky detector samples. High speed measurements at 267 nm resulted in fast pulse responses with >GHz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.Item Open Access High-performance solar-blind photodetectors based on AlxGa 1_xN heterostructures(IEEE, 2004) Özbay, Ekmel; Bıyıklı, Necmi; Kimukin, I.; Kartaloglu, T.; Tut, T.; Aytür, O.Design, fabrication, and characterization of high-performance AI xGa1-xN-based photodetectors for solar-blind applications are reported. AlxGa1-xN heterostructures were designed for Schottky. p-i-n, and metal-semicondnctor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3 fA, leakage currents at 6-V reverse bias were measured on p-i-n samples. The excellent current-voltage (I-V) characteristics led to a detectivity performance of 4.9×1014 cmHz1/2W -1. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.09 and 0.11 A/W peak responsivity values at 267 and 261 nm, respectively. A visible rejection of 2×104 was achieved with Schottky samples. High-speed measurements at 267 nm resulted in fast pulse responses with greater than gigahertz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.Item Open Access High-speed resonant-cavity-enhanced Schottky photodiodes(IEEE, 1998) Ata, Erhan P.; Bıyıklı, Necmi; Demirel, Ekrem; Özbay, Ekmel; Gökkavas, M.; Onat, B.; Ünlü, M. S.; Tuttle, G.The top-illuminated Schottky photodiodes were fabricated by a microwave-compatible monolithic microfabrication process. Fabrication started with formation of ohmic contacts to n+ layers. Mesa isolation was followed by a Ti-Au interconnect metallization. Following this, a semitransparent Au Schottky metal and a silicon nitride layer was deposited. Finally, a thick Ti-Au layer was deposited to form an air bridge connection between the interconnect and the Schottky metal. The optical properties of the photodiodes were simulated using a transfer matrix method.Item Open Access Holograms deep inside Silicon(Optical Society of America, 2016) Makey, Ghaith; Tokel, Onur; Turnalı, Ahmet; Pavlov, Ihor; Elahi, Parviz; Yavuz, Ozg ¨ un; İlday, F. ÖmerThrough the Nonlinear Laser Lithography method, we demonstrate the first computer generated holograms fabricated deep inside Silicon. Fourier and Fresnel holograms are fabricated buried inside Si wafers, and a generation algorithm is developed for hologram fabrication. © OSA 2016.Item Open Access Implementation of high quality-factor on-chip tuned microwave resonators at 7GHz(WILEY, 2009) Melik, R.; Demir, Hilmi VolkanWe report on the design, analytical modeling, numerical simulation, fabrication, and experimental characterization of chip-scale microwave resonators that exhibit high quality-factors (Q-factors) in the microwave frequency range. We demonstrate high Q-factors by tuning these microwave resonators with the film capacitance of their LC tank circuits rather than the conventional approach of using external capacitors for tuning. Our chip-scale resonator design further minimizes energy losses and reduces the effect of skin depth leading to high Q-factors even for significantly reduced device areas. Using our new design methodology, we observe that despite the higher resonance frequency and smaller chip size, the Q-factor is improved compared with the previous literature using traditional approaches. For our 540 m 540 m resonator chip, we theoretically compute a Q-factor of 52.40 at the calculated resonance frequency of 6.70 GHz and experimentally demonstrate a Q-factor of 47.10 at the measured resonance frequency of 6.97 GHz. We thus achieve optimal design for microwave resonators with the highest Q-factor in the smallest space for operation at 6.97 GHz.Item Open Access In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon(Nature Publishing Group, 2017) Tokel, O.; Turnalı, A.; Makey, G.; Elahi, P.; Çolakoǧlu, T.; Ergeçen E.; Yavuz, Ö.; Hübner R.; Borra, M. Z.; Pavlov, I.; Bek, A.; Turan, R.; Kesim, D. K.; Tozburun, S.; Ilday, S.; Ilday, F. Ö.Silicon is an excellent material for microelectronics and integrated photonics 1-3, with untapped potential for mid-infrared optics 4 . Despite broad recognition of the importance of the third dimension 5,6, current lithography methods do not allow the fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements 7, electronic devices and better electronic-photonic integration are lacking 8 . Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1-μm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has an optical index different to that in unmodified parts, enabling the creation of numerous photonic devices. Optionally, these parts can be chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface - that is, 'in-chip' - microstructures for microfluidic cooling of chips, vias, micro-electro-mechanical systems, photovoltaic applications and photonic devices that match or surpass corresponding state-of-the-art device performances.
- «
- 1 (current)
- 2
- 3
- »