High-performance solar-blind AlGaN photodetectors

Date

2005

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of SPIE Vol. 5732, Quantum Sensing and Nanophotonic Devices II

Print ISSN

1605-7422

Electronic ISSN

Publisher

SPIE

Volume

5732

Issue

Pages

375 - 388

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
19
downloads

Series

Abstract

Design, fabrication, and characterization of high-performance Al xGa1-xN-based photodetectors for solar-blind applications are reported. AlxGa1-xN heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3 fA leakage currents at 6 V and 12 V reverse bias were measured on p-i-n and Schottky photodiode samples respectively. The excellent current-voltage (I-V) characteristics led to a detectivity performance of 4.9×1014 cmHz1/2W-1. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.15 A/W and 0.11 A/W peak responsivity values at 267 nm and 261 nm respectively. All samples displayed true solar-blind response with cut-off wavelengths smaller than 280 nm. A visible rejection of 4×104 was achieved with Schottky detector samples. High speed measurements at 267 nm resulted in fast pulse responses with >GHz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)