High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current

Series

Abstract

Al0.38Ga0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solarblind detectors displayed extremely low dark current values: 30 μm diameter devices exhibited leakage current below 3fA under reverse bias up to 12V. True solar-blind operation was ensured with a sharp cut-off around 266nm. Peak responsivity of 147mA/W was measured at 256nm under 20V reverse bias. A visible rejection more than 4 orders of magnitude was achieved. The thermally-limited detectivity of the devices was calculated as 1.8 × 1013cm Hz1/2W-1. Temporal pulse response measurements of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1 GHz bandwidth. A bandwidth-efficiency product of 2.9GHz was achieved with the AlGaN Schottky photodiodes. © 2004 Elsevier Ltd. All rights reserved.

Source Title

Solid-State Electronics

Publisher

Pergamon Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English