Browsing by Author "Kyaw, Z."
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Item Open Access Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer(American Chemical Society, 2014-03-21) Ju, Z. G.; Liu W.; Zhang Z.-H.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang, X. L.; Lu, S. P.; Zhang, Y. P.; Zhu B.; Hasanov N.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron blocking layer (QWEBL) are designed and grown by a metal− organic chemical-vapor deposition (MOCVD) system. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer, not only leads to an improved hole injection but also reduces the electron leakage, thus enhancing the radiative recombination rates across the active region. Consequently, the light output power was enhanced by 10% for the QWEBL LED at a current density of 35 A/cm2. The efficiency droop of the optimized device was reduced to 16%. This is much smaller than that of the conventional p-AlGaN electron blocking layer LED, which is 31%.Item Open Access Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier(Optical Society of America, 2013) Ji Y.; Zhang, Z. -H.; Tan S.T.; Ju, Z. G.; Kyaw, Z.; Hasanov N.; Liu W.; Sun X. W.; Demir, Hilmi VolkanWe study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure. © 2013 Optical Society of America.Item Open Access A hole modulator for InGaN/GaN light-emitting diodes(American Institute of Physics, 2015) Zhang, Z-H.; Kyaw, Z.; Liu W.; Ji Y.; Wang, L.; Tan S.T.; Sun, X. W.; Demir, Hilmi VolkanThe low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332meV to ∼294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.Item Open Access Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Liu W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanThis work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America.Item Open Access Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering(Optical Society of America, 2014) Zhang, Zi-Hui; Ju, Z.; Liu W.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang X.; Hasanov N.; Sun, X. W.; Demir, Hilmi VolkanThe p-type AlGaN electron blocking layer (EBL) is widely used in InGaN/GaN light-emitting diodes (LEDs) for electron overflow suppression. However, a typical EBL also reduces the hole injection efficiency, because holes have to climb over the energy barrier generated at the p-AlGaN/p-GaN interface before entering the quantum wells. In this work, to address this problem, we report the enhancement of hole injection efficiency by manipulating the hole transport mechanism through insertion of a thin GaN layer of 1 nm into the p-AlGaN EBL and propose an AlGaN/GaN/AlGaN-type EBL outperforming conventional AlGaN EBLs. Here, the position of the inserted thin GaN layer relative to the p-GaN region is found to be the key to enhancing the hole injection efficiency. InGaN/ GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency.Item Open Access Influence of n-type versus p-type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes(AIP Publishing, 2013-08-01) Ji Y.; Zhang Z.-H.; Kyaw, Z.; Tan S.T.; Ju, Z. G.; Zhang, X. L.; Liu W.; Sun, X. W.; Demir, Hilmi VolkanThe effect of n-AlGaN versus p-AlGaN electron-blocking layers (EBLs) on the performance of InGaN/GaN light-emitting diodes is studied in this work. Experimental results suggest that the n-type EBL leads to higher optical output power and external quantum efficiency, compared to the devices with p-AlGaN EBL, which is commonly used today. Numerical simulations on the carrier distribution and energy band diagram reveal that the n-AlGaN EBL is more efficient in preventing electron overflow, while not blocking the hole injection into the active region, hence leading to higher radiative recombination rate within the multiple quantum wells active region. © 2013 AIP Publishing LLC.Item Open Access InGaN/GaN light-emitting diode with a polarization tunnel junction(American Institute of Physics, 2013) Zhang Z.-H.; Tan S.T.; Kyaw, Z.; Ji Y.; Liu W.; Ju, Z.; Hasanov N.; Sun, X. W.; Demir, Hilmi VolkanWe report InGaN/GaN light-emitting diodes (LED) comprising in situ integrated p(+)-GaN/InGaN/n(+)-GaN polarization tunnel junctions. Improved current spreading and carrier tunneling probability were obtained in the proposed device architecture, leading to the enhanced optical output power and external quantum efficiency. Compared to the reference InGaN/GaN LEDs using the conventional p(+)/n(+) tunnel junction, these devices having the polarization tunnel junction show a reduced forward bias, which is attributed to the polarization induced electric fields resulting from the in-plane biaxial compressive strain in the thin InGaN layer sandwiched between the p(+)-GaN and n(+)-GaN layers. (C) 2013 AIP Publishing LLC.Item Open Access InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination(AIP Publishing, 2014) Zhang Z.-H.; Liu W.; Ju, Z.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang, X.; Wang, L.; Sun, X. W.; Demir, Hilmi VolkanIn conventional InGaN/GaN light-emitting diodes (LEDs), thin InGaN quantum wells are usually adopted to mitigate the quantum confined Stark effect (QCSE), caused due to strong polarization induced electric field, through spatially confining electrons and holes in small recombination volumes. However, this inevitably increases the carrier density in quantum wells, which in turn aggravates the Auger recombination, since the Auger recombination scales with the third power of the carrier density. As a result, the efficiency droop of the Auger recombination severely limits the LED performance. Here, we proposed and showed wide InGaN quantum wells with the InN composition linearly grading along the growth orientation in LED structures suppressing the Auger recombination and the QCSE simultaneously. Theoretically, the physical mechanisms behind the Auger recombination suppression are also revealed. The proposed LED structure has experimentally demonstrated significant improvement in optical output power and efficiency droop, proving to be an effective solution to this important problem of Auger recombination.Item Open Access Low thermal-mass LEDs: Size effect and limits(Optical Society of American (OSA), 2014) Lu, S.; Liu W.; Zhang, Z.-H.; Tan, S.T.; Ju, Z.; Ji, Y.; Zhang X.; Zhang, Y.; Zhu, B.; Kyaw, Z.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanIn this work, low thermal-mass LEDs (LTM-LEDs) were developed and demonstrated in flip-chip configuration, studying both experimentally and theoretically the enhanced electrical and optical characteristics and the limits. LTM-LED chips in 25 × 25 μm2, 50 × 50 μm2, 100 × 100 μm2 and 200 × 200 μm2 mesa sizes were fabricated and comparatively investigated. Here it was revealed that both the electrical and optical properties are improved by the decreasing chip size due to the reduced thermal mass. With a smaller chip size (from 200 μm to 50 μm), the device generally presents higher current density against the bias and higher power density against the current density. However, the 25 × 25 μm2 device behaves differently, limited by the fabrication margin limit of 10 μm. The underneath mechanisms of these observations are uncovered, and furthermore, based on the device model, it is proven that for a specific flip-chip fabrication process, the ideal size for LTM-LEDs with optimal power density performance can be identified. ©2014 Optical Society of AmericaItem Open Access Nonradiative recombination-Critical in choosing quantum well number for InGaN/GaN light-emitting diodes(Optical Society of American (OSA), 2015) Zhang, Y.P.; Zhang, Z.-H.; Liu W.; Tan, S.T.; Ju, Z.G.; Zhang X.L.; Ji, Y.; Wang L.C.; Kyaw, Z.; Hasanov, N.; Zhu, B.B.; Lu, S.P.; Sun X.W.; Demir, Hilmi VolkanIn this work, InGaN/GaN light-emitting diodes (LEDs) possessing varied quantum well (QW) numbers were systematically investigated both numerically and experimentally. The numerical computations show that with the increased QW number, a reduced electron leakage can be achieved and hence the efficiency droop can be reduced when a constant Shockley-Read-Hall (SRH) nonradiative recombination lifetime is used for all the samples. However, the experimental results indicate that, though the efficiency droop is suppressed, the LED optical power is first improved and then degraded with the increasing QW number. The analysis of the measured external quantum efficiency (EQE) with the increasing current revealed that an increasingly dominant SRH nonradiative recombination is induced with more epitaxial QWs, which can be related to the defect generation due to the strain relaxation, especially when the effective thickness exceeds the critical thickness. These observations were further supported by the carrier lifetime measurement using a pico-second time-resolved photoluminescence (TRPL) system, which allowed for a revised numerical modeling with the different SRH lifetimes considered. This work provides useful guidelines on choosing the critical QW number when designing LED structures. © 2014 Optical Society of America.Item Open Access On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes(Optical Society of America, 2014-01-07) Kyaw, Z.; Zhang, Z. H.; Liu, W.; Tan, S. T.; Ju, Z. G.; Zhang, X. L.; Ji, Y.; Hasanov, N.; Zhu, B.; Lu, S.; Zhang, Y.; Sun, X. W.; Demir, Hilmi VolkanN-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple quantum wells (MQWs) are systematically studied both experimentally and theoretically to increase the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN layer sandwiched in the NPNPN-GaN structure is completely depleted due to the built-in electric field in the NPNPN-GaN junctions, and the ionized acceptors in these P-GaN layers serve as the energy barriers for electrons from the n-GaN region, resulting in a reduced electron over flow and enhanced the current spreading horizontally in the n-GaN region. These lead to increased optical output power and external quantum efficiency (EQE) from the proposed device. (C) 2014 Optical Society of AmericaItem Open Access On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes(IEEE, 2013) Zhang Z.-H.; Tan S.T.; Ju, Z.; Liu W.; Ji Y.; Kyaw, Z.; Dikme, Y.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) make an important class of optoelectronic devices, increasingly used in lighting and displays. Conventional InGaN/GaN LEDs of c-orientation exhibit strong internal polarization fields and suffer from significantly reduced radiative recombination rates. A reduced polarization within the device can improve the optical matrix element, thereby enhancing the optical output power and efficiency. Here, we have demonstrated computationally that the step-doping in the quantum barriers is effective in reducing the polarization-induced fields and lowering the energy barrier for hole transport. Also, we have proven experimentally that such InGaN/GaN LEDs with Si step-doped quantum barriers indeed outperform LEDs with wholly Si-doped barriers and those without doped barriers in terms of output power and external quantum efficiency. The consistency of our numerical simulation and experimental results indicate the effects of Si step-doping in suppressing quantum-confined stark effect and enhancing the hole injection, and is promising in improving the InGaN/GaN LED performance.Item Open Access On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes(Optical Society of America, 2014) Zhang, Z. H.; W. L.; Tan, S. T.; Ju, Z.; Ji, Y.; Kyaw, Z.; Zhang, X.; Hasanov, N.; Zhu, B.; Lu, S.; Zhang, Y.; Sun, X. W.; Demir, Hilmi VolkanElectron overflow limits the quantum efficiency of InGaN/GaN light-emitting diodes. InGaN electron cooler (EC) can be inserted before growing InGaN/GaN multiple quantum wells (MQWs) to reduce electron overflow. However, detailed mechanisms of how the InGaN EC contributes to the efficiency improvement have remained unclear so far. In this work, we theoretically propose and experimentally demonstrate an electron mean-free-path model, which reveals the InGaN EC reduces the electron mean free path in MQWs, increases the electron capture rate and also reduces the valence band barrier heights of the MQWs, in turn promoting the hole transport into MQWs. (C) 2014 Optical Society of AmericaItem Open Access On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer(AIP Publishing, 2014) Zhang Z.-H.; Ji Y.; Liu W.; Tan S.T.; Kyaw, Z.; Ju, Z.; Zhang X.; Hasanov N.; Lu S.; Zhang, Y.; Zhu B.; Sun, X. W.; Demir, Hilmi VolkanIn this work, the origin of electron blocking effect of n-type Al 0.25Ga0.75N electron blocking layer (EBL) for c+ InGaN/GaN light-emitting diodes has been investigated through dual-wavelength emission method. It is found that the strong polarization induced electric field within the n-EBL reduces the thermal velocity and correspondingly the mean free path of the hot electrons. As a result, the electron capture efficiency of the multiple quantum wells is enhanced, which significantly reduces the electron overflow from the active region and increases the radiative recombination rate with holes. © 2014 AIP Publishing LLC.Item Open Access P-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas(2013) Zhang, Z.-H.; Tiam Tan, S.; Kyaw, Z.; Liu W.; Ji, Y.; Ju, Z.; Zhang X.; Wei Sun X.; Volkan Demir H.Here, GaN/AlxGa1-xN heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants. © 2013 AIP Publishing LLC.Item Open Access A PN-type quantum barrier for InGaN/GaN light emitting diodes(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Ji, Y.; Liu W.; Ju, Z.; Kyaw, Z.; Sun X.W.; Demir, Hilmi VolkanIn this work, InGaN/GaN light-emitting diodes (LEDs) with PN-type quantum barriers are comparatively studied both theoretically and experimentally. A strong enhancement in the optical output power is obtained from the proposed device. The improved performance is attributed to the screening of the quantum confined Stark effect (QCSE) in the quantum wells and improved hole transport across the active region. In addition, the enhanced overall radiative recombination rates in the multiple quantum wells and increased effective energy barrier height in the conduction band has substantially suppressed the electron leakage from the active region. Furthermore, the electrical conductivity in the proposed devices is improved. The numerical and experimental results are in excellent agreement and indicate that the PN-type quantum barriers hold great promise for high-performance InGaN/GaN LEDs. © 2013 Optical Society of America.Item Open Access Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency(AIP Publishing, 2014) Zhang Z.-H.; Liu W.; Ju, Z.; Tan S.T.; Ji Y.; Zhang X.; Wang, L.; Kyaw, Z.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) grown along the [0001] orientation inherit very strong polarization induced electric fields. This results in a reduced effective conduction band barrier height for the p-type AlGaN electron blocking layer (EBL) and makes the electron blocking effect relatively ineffective and the electron injection efficiency drops. Here, we show the concept of polarization self-screening for improving the electron injection efficiency. In this work, the proposed polarization self-screening effect was studied and proven through growing a p-type EBL with AlN composition partially graded along the [0001] orientation, which induces the bulk polarization charges. These bulk polarization charges are utilized to effectively self-screen the positive polarization induced interface charges located at the interface between the EBL and the last quantum barrier when designed properly. Using this approach, the electron leakage is suppressed and the LED performance is enhanced significantly.Item Open Access Room-temperature larger-scale highly ordered nanorod imprints of ZnO film(Optical Society of American (OSA), 2013) Kyaw, Z.; Wang J.; Dev, K.; Tiam Tan, S.; Ju, Z.; Zhang, Z.-H.; Ji, Y.; Hasanov, N.; Liu W.; Sun X.W.; Demir, Hilmi VolkanRoom-temperature large-scale highly ordered nanorod-patterned ZnO films directly integrated on III-nitride light-emitting diodes (LEDs) are proposed and demonstrated via low-cost modified nanoimprinting, avoiding a high-temperature process. with a 600 nm pitch on top of a critical 200 nm thick Imprinting ZnO nanorods of 200 nm in diameter and 200 nm in height continuous ZnO wetting layer, the light output power of the resulting integrated ZnO-nanorod-film/semi- transparent metal/GaN/InGaN LED shows a two-fold enhancement (100% light extraction efficiency improvement) at the injection current of 150 mA, in comparison with the conventional LED without the imprint film. The increased optical output is well explained by the enhanced light scattering and outcoupling of the ZnOrod structures along with the wetting film, as verified by the numerical simulations. The wetting layer is found to be essential for better impedance matching. The current-voltage characteristics and electroluminescence measurements confirm that there is no noticeable change in the electrical or spectral properties of the final LEDs after ZnO-nanorod film integration. These results suggest that the low-cost high-quality large-scale ZnOnanorod imprints hold great promise for superior LED light extraction. ©2013 Optical Society of America.Item Open Access Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers(AIP Publishing, 2014) Zhang Z.-H.; Li, W.; Ju, Z.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang X.; Wang, L.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.Item Open Access Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes(AIP Publishing, 2014-04-24) Kyaw, Z.; Zhang Z.-H.; Liu W.; Tan S.T.; Ju, Z. G.; Zhang, X. L.; Ji Y.; Hasanov N.; Zhu B.; Lu S.; Zhang, Y.; Teng, J. H.; Wei, S. X.; Demir, Hilmi VolkanA three-step graded undoped-InGaN layers embedded between the GaN last quantum barrier layer and the p-AlGaN electron blocking layer was proposed and its effect on the performance of InGaN/GaN light-emitting diodes was investigated both experimentally and theoretically. In the proposed structure, the electron leakage is found to be effectively reduced, while the hole injection efficiency is simultaneously increased significantly, hence enabling a greatly enhanced radiative recombination rate within the active region. As a result, improvements of 12.25% in the optical output power and 11.98% in the external quantum efficiency are obtained from the proposed device with the respect to the reference device.