Low thermal-mass LEDs: Size effect and limits

Date

2014

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optics Express

Print ISSN

10944087

Electronic ISSN

Publisher

Optical Society of American (OSA)

Volume

22

Issue

26

Pages

32200 - 32207

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this work, low thermal-mass LEDs (LTM-LEDs) were developed and demonstrated in flip-chip configuration, studying both experimentally and theoretically the enhanced electrical and optical characteristics and the limits. LTM-LED chips in 25 × 25 μm2, 50 × 50 μm2, 100 × 100 μm2 and 200 × 200 μm2 mesa sizes were fabricated and comparatively investigated. Here it was revealed that both the electrical and optical properties are improved by the decreasing chip size due to the reduced thermal mass. With a smaller chip size (from 200 μm to 50 μm), the device generally presents higher current density against the bias and higher power density against the current density. However, the 25 × 25 μm2 device behaves differently, limited by the fabrication margin limit of 10 μm. The underneath mechanisms of these observations are uncovered, and furthermore, based on the device model, it is proven that for a specific flip-chip fabrication process, the ideal size for LTM-LEDs with optimal power density performance can be identified. ©2014 Optical Society of America

Course

Other identifiers

Book Title

Citation