On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes

Date

2014

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optics Express

Print ISSN

1094-4087

Electronic ISSN

Publisher

Optical Society of America

Volume

22

Issue

9

Pages

779 - 789

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Electron overflow limits the quantum efficiency of InGaN/GaN light-emitting diodes. InGaN electron cooler (EC) can be inserted before growing InGaN/GaN multiple quantum wells (MQWs) to reduce electron overflow. However, detailed mechanisms of how the InGaN EC contributes to the efficiency improvement have remained unclear so far. In this work, we theoretically propose and experimentally demonstrate an electron mean-free-path model, which reveals the InGaN EC reduces the electron mean free path in MQWs, increases the electron capture rate and also reduces the valence band barrier heights of the MQWs, in turn promoting the hole transport into MQWs. (C) 2014 Optical Society of America

Course

Other identifiers

Book Title

Citation