On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes

Date

2014

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
8
downloads

Citation Stats

Series

Abstract

Electron overflow limits the quantum efficiency of InGaN/GaN light-emitting diodes. InGaN electron cooler (EC) can be inserted before growing InGaN/GaN multiple quantum wells (MQWs) to reduce electron overflow. However, detailed mechanisms of how the InGaN EC contributes to the efficiency improvement have remained unclear so far. In this work, we theoretically propose and experimentally demonstrate an electron mean-free-path model, which reveals the InGaN EC reduces the electron mean free path in MQWs, increases the electron capture rate and also reduces the valence band barrier heights of the MQWs, in turn promoting the hole transport into MQWs. (C) 2014 Optical Society of America

Source Title

Optics Express

Publisher

Optical Society of America

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English