Browsing by Subject "Spectrum analysis"
Now showing 1 - 20 of 30
- Results Per Page
- Sort Options
Item Open Access Continuous and discrete fractional fourier domain decomposition(IEEE, 2000) Yetik, İ. Şamil; Kutay, M. A.; Özaktaş, H.; Özaktaş, Haldun M.We introduce the fractional Fourier domain decomposition for continuous and discrete signals and systems. A procedure called pruning, analogous to truncation of the singular-value decomposition, underlies a number of potential applications, among which we discuss fast implementation of space-variant linear systems.Item Open Access Defect luminescence in undoped p-type GaSe(Taylor & Francis, 2001) Aydınlı, Atilla; Gasanly, N. M.; Gökşen, K.Photoluminescence (PL) spectra of undoped single crystals of the layered semiconductor GaSe have been measured in the temperature range from 10 K to room temperature and in the wavelength range from 635 to 750 nm. Two wide bands centred at 644 and 695 nm have been observed at T = 10 K. A detailed analysis of the spectra obtained by varying the excitation intensity and temperature resulted in the identification of the levels involved. A simple model is proposed to account for the observed data.Item Open Access Derivation of Closed-Form Green’s Functions for a General Microstrip Geometry(1992) Aksun, M.I.; Mittra, R.The derivation of the closed-form spatial domain Green’s functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a super-state, whose thicknesses can be arbitrary. The spatial domain Green’s functions for printed circuits are typically expressed as Sommerfeld integrals, that are inverse Hankel transform of the corresponding spectral domain Green’s functions, and are quite time-consuming to evaluate. Closed-form representations of these Green’s functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. In this paper, we show we can accomplish this by approximating the spectral domain Green’s functions in terms of complex exponentials by using the least square Prony’s method. © 1992 IEEEItem Open Access Differentiation of domains in composite surface structures by charge-contrast x-ray photoelectron spectroscopy(2007) Süzer, Şefik; Dâna, A.; Ertas, G.An external bias is applied to two samples containing composite surface structures, while recording an XPS spectrum. Altering the polarity of the bias affects the extent of differential charging in domains that are chemically or electronically different to create a charge contrast. By utilizing this charge contrast, we show that two distinct silicon nitride and silicon oxynitride domains are present in one of the composite samples. Similarly, we use this technique to show that titanium oxide and silicon oxide domains exist as separate chemical entities in another composite sample. © 2007 American Chemical Society.Item Open Access Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics(A I P Publishing LLC, 2015) Serebryannikov, A. E.; Nojima, S.; Alici, K. B.; Özbay, EkmelThe effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs. © 2015 AIP Publishing LLC.Item Open Access Effective mass enhancement in two-dimensional electron systems: The role of interaction and disorder effects(Elsevier, 2004) Asgari, R.; Davoudi, B.; Tanatar, BilalRecent experiments on two-dimensional (2D) electron systems have found a sharp increase in the effective mass of electrons with decreasing electron density. In an effort to understand this behavior we employ the many-body theory to calculate the quasiparticle effective mass in 2D electron systems. Because the low density regime is explored in the experiments we use the GWγ approximation where the vertex correction γ describes the correlation effects to calculate the self-energy from which the effective mass is obtained. We find that the quasiparticle effective mass shows a sharp increase with decreasing electron density. Disorder effects due to charged impurity scattering plays a crucial role in density dependence of effective mass.Item Open Access An efficient method for electromagnetic characterization of 2-D geometries in stratified media(IEEE, 2002) Aksun, M. I.; Çalışkan, F.; Gürel, LeventA numerically efficient technique, based on the spectral-domain method of moments (MoM) in conjunction with the generalized pencil-of-functions (GPOF) method, is developed for the characterization of two-dimensional geometries in multilayer planar media. This approach provides an analytic expression for all the entries of the MoM matrix, explicitly including the indexes of the basis and testing functions provided that the Galerkin's MoM is employed. This feature facilitates an efficient modification of the geometry without the necessity of recalculating the additional elements in the MoM matrix. To assess the efficiency of the approach, the results and the matrix fill times are compared to those obtained with two other efficient methods, namely, the spatial-domain MoM in conjunction with the closed-form Green's functions, and a fast Fourier transform algorithm to evaluate the MoM matrix entries. Among these, the spectral-domain MoM using the GPOF algorithm is the most efficient approach for printed multilayer geometries.Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: influence of the preparation method(2009) Andreeva, D.; Ivanov, I.; Ilieva, L.; Abrashev, M. V.; Zanella, R.; Sobczak, J. W.; Lisowski, W.; Kantcheva, M.; Avdeev, G.; Petrov, K.Gold catalysts based on ceria, doped by various RE metals (La, Sm, Gd, Yb, Y) were studied. The influence of the preparation methods on structure, properties and catalytic activity in the WGS reaction was investigated. The catalysts' supports were prepared using two different methods: co-precipitation (CP) and mechanochemical activation (MA). The catalysts were tested in a wide temperature interval without and after reactivation. All samples were characterized using a combination of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS) and TPR. It was found that the catalytic activity of MA catalysts is higher than CP ones. The gold catalysts based on ceria doped by Yb and Sm exhibited the highest activity. After reactivation in air the MA samples almost kept the WGS activity same, while the CP catalysts increased it. The catalysts of a single- and double-phase structure are formed as a result of CP and MA preparation, respectively. There are no big differences in the gold particles size (2-3 nm) depending on dopants and on the preparation techniques. The RS spectra analysis indicates that most probably the oxygen vacancies are adjacent to Me3+ dopant and the ceria structure seems to be better ordered than in the case of alumina as a dopant. There is no distinct correlation between reducibility and WGS activity. The XPS analysis disclose positively charged gold particles in addition to metallic gold within a surface region of fresh samples and only metallic gold on the samples after catalytic processing. There is no simple correlation between the concentration of Ce3+ in the samples and their WGS activity.Item Open Access Interframe differential vector coding of line spectrum frequencies(IEEE, 1993-04) Erzin, Engin; Çetin, A. EnisLine Spectrum Frequencies (LSF's) uniquely represent the Linear Predictive Coding (LPC) filter of a speech frame. In many vocoders LSF's are used to encode the LPC parameters. In this paper, an interframe differential coding scheme is presented for the LSF's. The LSF's of the current speech frame are predicted by using both the LSF's of the previous frame and some of the LSF's of the current frame. Then, the difference vector resulting from prediction is vector quantized.Item Open Access ITO-schottky photodiodes for high-performance detection in the UV-IR spectrum(IEEE, 2004) Bıyıklı, Necmi; Kimukin, I.; Butun, B.; Aytür, O.; Özbay, EkmelHigh-performance vertically illuminated Schottky photodiodes with indium-tin-oxide (ITO) Schottky layers were designed, fabricated, and tested. Ternary and quarternary III-V material systems (AlGaN-GaN, AlGaAs-GaAs, InAlGaAs-InP, and InGaAsP-InP) were utilized for detection in the ultraviolet (UV) (λ < 400 nm), near-IR (λ ∼ 850 nm), and IR (λ ∼ 1550 nm) spectrum. The material properties of thin ITO films were characterized. Using resonant-cavity-enhanced (RCE) detector structures, improved efficiency performance was achieved. Current-voltage, spectral responsivity, and high-speed measurements were carried out on the fabricated ITO-Schottky devices. The device performances obtained with different material systems are compared.Item Open Access Line spectral frequency representation of subbands for speech recognition(1995) Erzin, E.; Çetin, A.E.In this paper, a new set of speech feature parameters is constructed from subband analysis based Line Spectral Frequencies (LSFs). The speech signal is divided into several subbands and the resulting subsignals are represented by LSFs. The performance of the new speech feature parameters, SUBLSFs, is compared with the widely used Mel Scale Cepstral Coefficients (MELCEPs). SUBLSFs are observed to be more robust than the MELCEPs in the presence of car noise. © 1995.Item Open Access Local-pair superconductivity in very high magnetic fields(Scientific and Technical Research Council of Turkey - TUBITAK,Turkiye Bilimsel ve Teknik Arastirma Kurumu, 1996) Gedik, ZaferSuperconductivity of narrow-band systems with local, short-range attractive interaction in very high magnetic fields is discussed. By examining the excitation spectra of both type-II superconductors with BCS like interaction and local-pair superconductors with negative-U type interaction, it is concluded that gapless single particle energy spectrum is a characteristic feature of superconductivity in very high magnetic fields.Item Open Access Low-temperature phase transitions in TlGaS2 layer crystals(Pergamon Press, 1993) Aydınlı, Atilla; Ellialtioǧlu, R.; Allakhverdiev, K. R.; Ellialtioǧlu, S.; Gasanly, N. M.Polarized Raman scattering spectra of TlGaS2 layer crystals have been studied for the first time as a function of temperature between 8.5 and 295 K. No evidence for a soft mode behaviour has been found. The anomalies observed in the temperature dependence of low- and high-frequency phonon modes at ∼ 250 and ∼ 180 K, respectively, are explained as due to the phase transitions. It is supposed that the phase transitions are caused by the deformation of structural complexes GaS4, rather than by slippage of Tl atom channels in [110] and [110] directions, which is mainly responsible for the appearance of the low-temperature ferroelectric phase transitions in other representatives of TlBX2 layer compounds. © 1993.Item Open Access Low-temperature photoluminescence spectra of layered semiconductor TlGaS2(Pergamon Press, 1998) Gasanly, N. M.; Aydınlı, Atilla; Bek, A.; Yilmaz, I.Photoluminescence (PL) spectra of TlGaS2 layered single crystals were studied in the wavelength region 500-860 nm and in the temperature range 9.5-293 K. We observed a total of three PL bands centered at 568 nm (2.183 eV, A-band), 718 nm (1.727 eV, B-band) and 780 nm (1.590 eV, C-band) at various temperatures. We have also studied the variations of the A- and B-band intensities vs excitation laser density in the range from 7 × 10-2 to 9 W cm-2. The A- and B-bands were found to be due to radiative transitions from the deep donor levels located at 0.362 and 0.738 eV below the bottom of the conduction band to the shallow acceptor levels at 0.005 and 0.085 eV located above the top of the valence band, respectively. The proposed energy-level diagram permits us to interpret the recombination processes in TlGaS2 layered single crystals. © 1997 Elsevier Science Ltd.Item Open Access Model-based spectral analysis of photon propagation through nanoparticle-labeled epithelial tissues(SPIE, 2011) Cihan, Can; Arifler, D.Metal nanoparticles can function as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo simulations to model photon propagation through normal tissues, unlabeled precancerous tissues, and precancerous tissues labeled with gold nanospheres and we compute the spectral reflectance response of these different tissue states. The results indicate that nanoparticle-induced changes in the spectral reflectance profile of tissues depend not only on the properties of these particles but also on the source-detector geometry used. When the source and detector fibers are oriented side by side and perpendicular to the tissue surface, the reflectance intensity of precancerous tissue is lower compared to that of normal tissue over the entire wavelength range simulated and addition of nanospheres enhances this negative contrast. When the fibers are tilted toward each other, the reflectance intensity of precancerous tissue is higher compared to that of normal tissue and labeling with nanospheres causes a significant enhancement of this positive contrast. The results also suggest that model-based spectral analysis of photon propagation through nanoparticle-labeled tissues provides a useful framework to quantify the extent of achievable contrast enhancement due to external labeling and to assess the diagnostic potential of nanoparticle-enhanced optical measurements. © 2011 SPIE-OSA.Item Open Access Morphological segmentation of urban structures(IEEE, 2007-04) Akçay, H. Gökhan; Aksoy, SelimAutomatic segmentation of high-resolution remote sensing imagery is an important problem in urban applications because the resulting segmentations can provide valuable spatial and structural information that are complementary to pixel-based spectral information in classification. We present a method that combines structural information extracted by morphological processing with spectral information summarized using principal components analysis to produce precise segmentations that are also robust to noise. First, principal components are computed from hyper-spectral data to obtain representative bands. Then, candidate regions are extracted by applying connected components analysis to the pixels selected according to their morphological profiles computed using opening and closing by reconstruction with increasing structuring element sizes. Next, these regions are represented using a tree, and the most meaningful ones are selected by optimizing a measure that consists of two factors: spectral homogeneity, which is calculated in terms of variances of spectral features, and neighborhood connectivity, which is calculated using sizes of connected components. The experiments show that the method is able to detect structures in the image which are more precise and more meaningful than the structures detected by another approach that does not make strong use of neighborhood and spectral information. © 2007 IEEE.Item Open Access Nanograined surface shell wall controlled ZnO–ZnS core–shell nanofibers and their shell wall thickness dependent visible photocatalytic properties(Royal Society of Chemistry, 2017) Ranjith, K. S.; Senthamizhan A.; Balusamy, B.; Uyar, TamerThe core-shell form of ZnO-ZnS based heterostructural nanofibers (NF) has received increased attention for use as a photocatalyst owing to its potential for outstanding performance under visible irradiation. One viable strategy to realize the efficient separation of photoinduced charge carriers in order to improve catalytic efficiency is to design core-shell nanostructures. But the shell wall thickness plays a vital role in effective carrier separation and lowering the recombination rate. A one dimensional (1D) form of shell wall controlled ZnO-ZnS core-shell nanofibers has been successfully prepared via electrospinning followed by a sulfidation process. The ZnS shell wall thickness can be adjusted from 5 to 50 nm with a variation in the sulfidation reaction time between 30 min and 540 min. The results indicate that the surfaces of the ZnO nanofibers were converted to a ZnS shell layer via the sulfidation process, inducing visible absorption behavior. Photoluminescence (PL) spectral analysis indicated that the introduction of a ZnS shell layer improved electron and hole separation efficiency. A strong correlation between effective charge separation and the shell wall thickness aids the catalytic behavior of the nanofiber network and improves its visible responsive nature. The comparative degradation efficiency toward methylene blue (MB) has been studied and the results showed that the ZnO-ZnS nanofibers with a shell wall thickness of ∼20 nm have 9 times higher efficiency than pristine ZnO nanofibers, which was attributed to effective charge separation and the visible response of the heterostructural nanofibers. In addition, they have been shown to have a strong effect on the degradation of Rhodamine B (Rh B) and 4-nitrophenol (4-NP), with promising reusable catalytic efficiency. The shell layer upgraded the nanofiber by acting as a protective layer, thus avoiding the photo-corrosion of ZnO during the catalytic process. A credible mechanism for the charge transfer process and a mechanism for photocatalysis supported by trapping experiments in the ZnO-ZnS heterostructural system for the degradation of an aqueous solution of MB are also explicated. Trapping experiments indicate that h+ and OH are the main active species in the ZnO-ZnS heterostructural catalyst, which do not effectively contribute in a bare ZnO catalytic system. Our work also highlights the stability and recyclability of the core-shell nanostructure photocatalyst and supports its potential for environmental applications. We thus anticipate that our results show broad potential in the photocatalysis domain for the design of a visible light functional and reusable core-shell nanostructured photocatalyst.Item Open Access Near-UV InGaN/GaN-based dual-operation quantum optoelectronic devices(SPIE, 2007) Özel, Tuncay; Sarı, Emra; Nizamoğlu, Sedat; Demir, Hilmi VolkanWe present a novel dual-operation InGaN/GaN based quantum optoelectronic device (QOD) that operates as a quantum electroabsorption modulator in reverse bias and as a light emitter in forward bias in the spectral range of near-ultraviolet (UV). Here we report the design, epitaxial growth, fabrication, and characterization of such QODs that incorporate ∼2-3 nm thick InGaN/GaN quantum structures for operation between 380 nm and 400 nm. In reverse bias, our QODs show an optical absorption coefficient change of ∼14000 cm -1 with a reverse bias of 9 V (corresponding to ∼40 cm -1 absorption coefficient change for 1 V/μm field swing) at 385 nm, reported for the first time for InGaN/GaN quantum structures in the near-UV range. In forward bias, though, our QODs exhibit optical electroluminescence spectrum centered around 383 nm with a full width at half maximum of 20 nm and photoluminescence spectrum centered around 370 nm with a full width at half maximum of 12 nm. This dual operation makes such quantum optoelectronic devices find a wide range of optoelectronics applications both as an electroabsorption modulator and a light emitting diode (LED).Item Open Access On the number of clusters in channel model(IEEE, 2006-08) Akkaya, Keziban; Tunç, Celal Alp; Aktaş, Defne; Altıntaş, AyhanTypically, scatterers in an environment are not distributed uniformly but rather observed to occur in clusters. Identification of clusters is an issue under discussion. To this end, we study the effect of number of clusters on channel model through computer simulations. We focus on a geometric stochastic directional channel model based on COST259. Fixing a scatterer scenario, we calculate root mean square delay and angular spreads when scatterers are grouped into varying numbers of clusters and study how sensitive these parameters are to the number of clusters used in this channel model. © 2006 IEEE.