Browsing by Subject "Spectral responsivity"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access AlGaN quadruple-band photodetectors(IEEE, 2009) Gökkavas, Mutlu; Bütün, Serkan; Caban, P.; Strupinski, W.; Özbay, EkmelQuadruple back-illuminated ultraviolet metal-semiconductor-metal photodetectors with four different spectral responsivity bands were demonstrated. The average of the full-width at half-maximum (FWHM) of the quantum efficiency peaks was 9.98 nm.Item Open Access High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current(Pergamon Press, 2005-01) Tut, T.; Bıyıklı, Necmi; Kimukin, I.; Kartaloglu, T.; Aytur, O.; Unlu, M. S.; Özbay, EkmelAl0.38Ga0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solarblind detectors displayed extremely low dark current values: 30 μm diameter devices exhibited leakage current below 3fA under reverse bias up to 12V. True solar-blind operation was ensured with a sharp cut-off around 266nm. Peak responsivity of 147mA/W was measured at 256nm under 20V reverse bias. A visible rejection more than 4 orders of magnitude was achieved. The thermally-limited detectivity of the devices was calculated as 1.8 × 1013cm Hz1/2W-1. Temporal pulse response measurements of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1 GHz bandwidth. A bandwidth-efficiency product of 2.9GHz was achieved with the AlGaN Schottky photodiodes. © 2004 Elsevier Ltd. All rights reserved.Item Open Access High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts(American Institute of Physics, 2003) Bıyıklı, Necmi; Kimukin, I.; Kartaloglu, T.; Aytur, O.; Özbay, EkmelAlGaN/GaN-based high-speed solar-blind photodetectors were discussed. Current-voltage, spectral responsivity, and high-frequency response characterizations were performed. Breakdown voltages larger than 40 V were obtained. A maximum responsivity of 44 mA/W at 263 nm was measured. True solar-blind detection was also ensured.Item Open Access Integrated AlGaN quadruple-band ultraviolet photodetectors(IOP Publishing, 2012-04-27) Gökkavas, M.; Butun, S.; Caban, P.; Strupinski, W.; Özbay, EkmelMonolithically integrated quadruple back-illuminated ultraviolet metalsemiconductormetal photodetectors with four different spectral responsivity bands were demonstrated on each of two different Al xGa 1-xN heterostructures. The average of the full-width at half-maximum (FWHM) of the quantum efficiency peaks was 18.15nm for sample A, which incorporated five 1000nm thick epitaxial layers. In comparison, the average FWHM for sample B was 9.98 nm, which incorporated nine 500nm thick epitaxial layers.Item Open Access LSPR enhanced MSM UV photodetectors(IOP Publishing, 2012-10-18) Butun, S.; Cinel, N. A.; Özbay, EkmelWe fabricated localized surface plasmon resonance enhanced UV photodetectors on MOCVD grown semi-insulating GaN. Plasmonic resonance in the UV region was attained using 36nm diameter Al nanoparticles. Extinction spectra of the nanoparticles were measured through spectral transmission measurements. A resonant extinction peak around 300nm was obtained with Al nanoparticles. These particles gave rise to enhanced absorption in GaN at 340nm. Spectral responsivity measurements revealed an enhancement factor of 1.5. These results provided experimental verification for obtaining field enhancement by using Al nanoparticles on GaN.Item Open Access Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV(Optical Society of American (OSA), 2008) Mutlugun, E.; Soganci I.M.; Demir, Hilmi VolkanWe propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe)ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV. © 2008 Optical Society of America.Item Open Access Silicon-Germanium multi-quantum well photodetectors in the near infrared(Optical Society of American (OSA), 2012) Onaran, E.; Onbasli, M. C.; Yesilyurt, A.; Yu, H. Y.; Nayfeh, A. M.; Okyay, Ali KemalSingle crystal Silicon-Germanium multi-quantum well layers were epitaxially grown on silicon substrates. Very high quality films were achieved with high level of control utilizing recently developed MHAH epitaxial technique. MHAH growth technique facilitates the monolithic integration of photonic functionality such as modulators and photodetectors with low-cost silicon VLSI technology. Mesa structured p-i-n photodetectors were fabricated with low reverse leakage currents of ∼10 mA/cm2 and responsivity values exceeding 0.1 A/W. Moreover, the spectral responsivity of fabricated detectors can be tuned by applied voltage. © 2012 Optical Society of America.Item Open Access Solar-blind A1GaN-based p-i-n photodiodes with low dark current and high detectivity(IEEE, 2004) Bıyıklı, Necmi; Kimukin, I.; Aytur, O.; Özbay, EkmelWe report solar-blind AlxGal1-xN-based heterojunction p-i-n photodiodes with low dark current and high detectivity. After the p+ GaN cap layer was recess etched, measured dark current was below 3 fA for reverse bias values up to 6 V. The device responsivity increased with reverse bias and reached 0.11 A/W at 261 nm under 10-V reverse bias. The detectors exhibited a cutoff around 283 nm, and a visible rejection of four orders of magnitude at zero bias. Low dark current values led to a high differential resistance of 9.52 × 1015 Ω. The thermally limited detectivity of the devices was calculated as 4.9 × 1014 cm · Hz1/2W-1. © 2004 IEEE.