Browsing by Subject "Raman scattering"
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Item Open Access Anharmonicity of zone-center optical phonons: Raman scattering spectra of GaSe0.5S0.5 layered crystal(IOPscience, 2002) Gasanly, N. M.; Aydınlı, Atilla; Kocabas, C.; Özkan H.The temperature dependencies (10-300 K) of the eight Raman-active mode frequencies and linewidths in GaSe0.5S0.5 layered crystal have been measured in the frequency range from 10 to 320 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison of the experimental data with the theories of the shift and broadening of the interlayer and intralayer phonon lines showed that the temperature dependencies can be explained by the contributions from thermal expansion, lattice anharmonicity and crystal disorder. The purely anharmonic contribution (phonon-phonon coupling) is found to be due to three-phonon processes. It was established that the effect of crystal disorder on the broadening of phonon lines is greater for GaSe0.5S0.5 than for binary compounds GaSe and GaS.Item Open Access An array of surface-enhanced Raman scattering substrates based on plasmonic lenses(Wiley, 2012-10-01) Kahraman, M.; Cakmakyapan, S.; Özbay, Ekmel; Culha, M.An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. Either the diameter of the hole (0.5, 1.0, 2.0, 3.0 and 4.0 μm) or the slit width (200, 300, 400, 500 and 600 nm) is varied. 4-Aminothiophenol (ATP) adsorbed on the structures as a self-assembled monolayer (SAM) is used as probe to evaluate the SERS performance of the generated structures. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit width. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film. An array of these structures at this optimal configuration can easily be constructed and used in a range of SERS-based sensing applications. An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit with. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film.Item Open Access Formation of Ge nanocrystals and SiGe in PECVD grown SiNx: Ge thin films(Elsevier, 2006) Dana, A.; Tokay, S.; Aydınlı, AtillaFormation of Ge nanocrystals in SiNx matrices has been studied using plasma enhanced chemical vapor deposition in both as deposited samples as well as in post-vacuum annealed samples. Low temperature and short duration anneals in vacuum resulted in Ge nanocrystals whereas prolonged anneals at higher temperatures resulted in Ge nanocrystals accompanied with SiGe formation at the SiNx/Si interface. Raman Scattering Spectroscopy was extensively used to track the formation of various phonon modes during the diffusion of Ge through SiNx and into the Si substrate.Item Open Access High power supercontinuum generation in graded-index multimode fibers(Institute of Electrical and Electronics Engineers Inc., 2019) Teğin, Uğur; Ortaç, BülendOver the years, supercontinuum generation in fibers are studied extensively. Photonic crystal fiber technology detailed these studies by allowing the change of dispersion parameter. Nowadays, multimode fibers attracted huge attention by enabling spatiotemporal nonlinearities and multimodal interactions. Recently, with graded-index multimode fibers, researchers reported new nonlinear dynamics such as cascaded Raman scattering [1], spatiotemporal instability [2,3], self-beam cleaning [4], multimode solitons [5].Item Open Access Infrared photoluminescence from TlGaS2 layered single crystals(Wiley - V C H Verlag GmbH & Co., 2004) Yuksek, N. S.; Gasanly, N. M.; Aydınlı, Atilla; Ozkan, H.; Acikgoz, M.Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500-1400 nm and in the temperature range 15-115 K. We observed three broad bands centered at 568 nm (A-band), 718 nm (B-band) and 1102 nm (C-band) in the PL spectrum. The observed bands have half-widths of 0.221, 0.258 and 0.067 eV for A-, B-, and C-bands, respectively. The increase of the emission band half-width, the blue shift of the emission band peak energy and the quenching of the PL with increasing temperature are explained using the configuration coordinate model. We have also studied the variations of emission band intensity versus excitation laser intensity in the range from 0.4 to 19.5 W cm-2. The proposed energy-level diagram allows us to interpret the recombination processes in TlGaS2 crystals.Item Open Access Low-temperature phase transitions in TlGaS2 layer crystals(Pergamon Press, 1993) Aydınlı, Atilla; Ellialtioǧlu, R.; Allakhverdiev, K. R.; Ellialtioǧlu, S.; Gasanly, N. M.Polarized Raman scattering spectra of TlGaS2 layer crystals have been studied for the first time as a function of temperature between 8.5 and 295 K. No evidence for a soft mode behaviour has been found. The anomalies observed in the temperature dependence of low- and high-frequency phonon modes at ∼ 250 and ∼ 180 K, respectively, are explained as due to the phase transitions. It is supposed that the phase transitions are caused by the deformation of structural complexes GaS4, rather than by slippage of Tl atom channels in [110] and [110] directions, which is mainly responsible for the appearance of the low-temperature ferroelectric phase transitions in other representatives of TlBX2 layer compounds. © 1993.Item Open Access Low-temperature Raman scattering spectra of GaSexS1-x layered mixed crystals(WILEY-VCH Verlag GmbH & Co. KGaA, 2002) Gasanly, N. M.; Aydınlı, AtillaRaman scattering has been used to study the vibrational spectra of GaSexS1-x layered mixed crystals at 10 K. We report the frequency dependencies of different modes on composition x, with particular emphasis on A′1 (2) (A1g 1) and A′1 (4) (A1g 2) intralayer compressional modes having low dispersion in the Brillouin zone. The appearance of additional bands is attributed to multimode behavior typically exhibited by mixed crystals of anisotropic compounds.Item Open Access Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performance(American Chemical Society, 2017-09) Pradhan, A. C.; Uyar, TamerThe one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co3O4-CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co3O4-CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co3O4-CuO NFs but also single mesoporous Co3O4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co3O4 nanofibers framework (Co3O4-CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co3O4-CuO NFs is due to the internal charge transfer between Co2+ to Co3+ and Cu2+, proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co3O4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co3O4-CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co3O4-CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co3O4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co3O4-CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.Item Open Access Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin(Elsevier, 2016-09) Kibar, G.; Topal, A. E.; Dana, A.; Tuncel, A.We report the preparation of silver-coated magnetic polymethacrylate core-shell nanoparticles for use in surface-enhanced Raman scattering based drug detection. Monodisperse porous poly (mono-2-(methacryloyloxy)ethyl succinate-co-glycerol dimethacrylate), poly (MMES-co-GDMA) microbeads of ca. 5 μm diameter were first synthesized through a multistage microsuspension polymerization technique to serve as a carboxyl-bearing core region. Microspheres were subsequently magnetized by the co-precipitation of ferric ions, aminated through the surface hydroxyl groups and decorated with Au nanoparticles via electrostatic attraction. An Ag shell was then formed on top of the Au layer through a seed-mediated growth process, resulting in micron-sized monodisperse microbeads that exhibit Raman enhancement effects due to the roughness of the Ag surface layer. The core-shell microspheres were used as a new substrate for the detection of amoxicillin at trace concentrations up to 10-8 M by SERS. The proposed SERS platform can be evaluated as a useful tool for the follow-up amoxicillin pollution and low-level detection of amoxicillin in aqueous media.Item Open Access Organization of bridging organics in periodic mesoporous organosilicas (PMOs)-polarization micro-raman spectroscopy(Wiley, 2001) Dag, Ö.; Ozin, G. A.The organization of bridging organics in oriented periodic mesoporous organosilica film (OPMOF) was demonstrated using the polarization micro-Raman spectroscopy (PMRS) in conjunction with powder x-ray diffraction (PXRD) and polarization optical microscopy (POM). The synthesis and the structural characterization of hexagonal symmetry OPMOF containing bridge-bonded ethane, ethene inside the silica channel walls were described. The mesoscale channels were found to run parallel to the surface of the underlying glass substrates as demonstrated by the PXRD measurements. A hexagonal array of channels with glassy silica organosilica walls was the best description of the structure shown by the PMRS measurements of OPMOF.Item Open Access Plasmonic band gap structures for surface-enhanced Raman scattering(Optical Society of American (OSA), 2008) Kocabas, A.; Ertas G.; Senlik, S.S.; Aydınlı, AtillaSurface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler to excite surface plasmon polaritons (SPP), and the other forming a plasmonic band gap for the propagating SPPs. In the vicinity of the band edges, localized surface plasmons are formed. These localized Plasmons strongly enhance the scattering efficiency of the Raman signal emitted on the metallic grating surfaces. It was shown that reproducible Raman scattering enhancement factors of over 10 5 can be achieved by fabricating biharmonic SERS templates using soft nano-imprint technique. We have shown that the SERS activities from these templates are tunable as a function of plasmonic resonance conditions. Similar enhancement factors were also measured for directional emission of photoluminescence. At the wavelengths of the plasmonic absorption peak, directional enhancement by a factor of 30 was deduced for photoluminescence measurements. © 2008 Optical Society of America.Item Open Access Quantum statistics of light interacting with matter(1999) Müstecaplıoğlu, ÖEStudies on some systems in which light interacts with matter are performed from quantum statistical point of view. As a result of these studies a novel effect which can be utilized for detecting squeezed phonons is predicted; detection of non-classical states of Bose type excitations in solids and their classification by Raman correlation spectroscopy are discussed; a new approach to the polarization of light is developed.Item Open Access Raman enhancement on a broadband meta-surface(American Chemical Society, 2012-07-30) Ayas S.; Güner, H.; Türker, B.; Ekiz, O. O.; Dirisaglik, F.; Okyay, Ali Kemal; Dâna, A.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material.Item Open Access Raman studies of doped polycrystalline silicon from laser-annealed, doped a-Si:H(Pergamon Press, 1994) Compaan, A.; Savage, M. E.; Aydınlı, Atilla; Azfar, T.We have used Raman scattering to follow the progress of multiple-pulse (sub-melt-threshold) laser annealing in doped hydrogenated amorphous silicon films (a-Si:H) on glass. In phosphorous-doped a-Si:H the Raman signal shows that recrystallization begins with the first laser pulse but the multiple pulses are needed to generate the highest hole concentrations of ∼6×1020 cm-3. In boron-doped a-Si:H the electron concentration reaches ∼1×1021 cm-3 after laser anneal which produces a dip rather than a peak near the phonon line as a consequence of a negative Fano-interference parameter, q. The results show that Raman scattering can be used to obtain carrier concentrations in poly-silicon provided that wavelength-dependent Fano interference effects are properly included. © 1994.Item Open Access Resonant Raman scattering near the free-to-bound transition in undoped p-GaSe(Wiley, 2001) Gasanly, N. M.; Aydınlı, A.; Özkan, H.Raman spectra of GaSe layered crystal have been measured using a He-Ne laser and temperature tuning the free-to-bound gap in the range 10-290 K. Resonance enhancement of E’’(2) mode has been observed for both incident and scattered photon energies equal to the free-to-bound transition energy.Item Open Access Temperature dependence of the first-order Raman scattering in GaS layered crystals(Pergamon Press, 2000) Gasanly, N. M.; Aydınlı, A.; Özkan, H.; Kocabaş, C.The temperature dependence (15-293 K) of the six Raman-active mode frequencies and linewidths in gallium sulfide has been measured in the frequency range from 15 to 380 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison between the experimental data and theories of the shift and broadening of the interlayer and intralayer phonon lines during the heating of the crystal showed that the experimental dependencies can be explained by the contributions from thermal expansion and lattice anharmonicity. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.Item Open Access Temperature dependence of the Raman-active phonon frequencies in indium sulfide(Pergamon Press, 1999) Gasanly, N. M.; Özkan, H.; Aydınlı, Atilla; Yilmaz, I.The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.Item Open Access Temperature-dependent Raman scattering spectra of ε-GaSe layered crystal(Elsevier Science, 2002) Gasanly, N. M.; Aydnl, A.; Özkan, H.; Kocabaş, C.The temperature dependencies (15-300 K) of seven Raman-active mode frequencies and linewidths in layered gallium selenide have been measured in the frequency range from 10 to 320 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison between the experimental data and theories of the shift and broadening of the intralayer phonon lines during heating of the crystal showed that the experimental dependencies can be explained by the contributions from thermal expansion, lattice anharmonicity and crystal disorder. The pure-temperature contribution (phonon-phonon coupling) is due to three-phonon processes. Moreover, it was established that the effect of crystal disorder on the linewidth broadening of TO mode is stronger than that of LO mode.Item Open Access Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with solid-electrolyte(Elsevier, 2017-10) Vempati, Sesha; Ertaş, Yelda; Çelebioğlu, Aslı; Uyar, TamerWe report on the effects of ionic interaction on the electronic structure of PEDOT:PSS where the oxidation state of PEDOT is an import aspect for various applications. Additional ionic interactions are introduced and controlled by varying the fraction of poly(ethylene oxide) (PEO). These interactions are balanced against the inherent cohesive forces within each of the polymers constituting intertwined networks. Raman spectra evidenced a peak-shift as high as ∼14 cm−1 for C[dbnd]C vibrational region which suggested increasing degree of oxidation of PEDOT for higher PEO fractions. Changes to the single and bipolaronic absorption bands support the results from the Raman spectra. For highest PEO fraction neutral-PEDOT and lowered bipolaron density is attributed to localization of PEDOT chains within PEO matrix. Interestingly, for higher PEO fractions the electronic density of states (DOS) of HOMO and core-levels (S2p, C1s and O1s) suggested increased degree of oxidation and electron localization on PEDOT. Near and below (∼12 eV) Fermi level, contribution to the O2p and C2p atomic orbitals depicted significantly different DOS. Also we note energetic shift for O2s/C2s and bonding σCC atomic and molecular DOS, respectively. The correlation between some surface and bulk-related properties suggests the uniformity of the blend material which might be vital for the application in electrochemical devices.