Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with solid-electrolyte

Available
The embargo period has ended, and this item is now available.

Date

2017-10

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Applied Surface Science

Print ISSN

0169-4332

Electronic ISSN

Publisher

Elsevier

Volume

419

Issue

Pages

770 - 777

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
26
downloads

Series

Abstract

We report on the effects of ionic interaction on the electronic structure of PEDOT:PSS where the oxidation state of PEDOT is an import aspect for various applications. Additional ionic interactions are introduced and controlled by varying the fraction of poly(ethylene oxide) (PEO). These interactions are balanced against the inherent cohesive forces within each of the polymers constituting intertwined networks. Raman spectra evidenced a peak-shift as high as ∼14 cm−1 for C[dbnd]C vibrational region which suggested increasing degree of oxidation of PEDOT for higher PEO fractions. Changes to the single and bipolaronic absorption bands support the results from the Raman spectra. For highest PEO fraction neutral-PEDOT and lowered bipolaron density is attributed to localization of PEDOT chains within PEO matrix. Interestingly, for higher PEO fractions the electronic density of states (DOS) of HOMO and core-levels (S2p, C1s and O1s) suggested increased degree of oxidation and electron localization on PEDOT. Near and below (∼12 eV) Fermi level, contribution to the O2p and C2p atomic orbitals depicted significantly different DOS. Also we note energetic shift for O2s/C2s and bonding σCC atomic and molecular DOS, respectively. The correlation between some surface and bulk-related properties suggests the uniformity of the blend material which might be vital for the application in electrochemical devices.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)