Raman studies of doped polycrystalline silicon from laser-annealed, doped a-Si:H

Date

1994

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Solid State Communications

Print ISSN

0038-1098

Electronic ISSN

Publisher

Pergamon Press

Volume

90

Issue

2

Pages

77 - 81

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
9
downloads

Series

Abstract

We have used Raman scattering to follow the progress of multiple-pulse (sub-melt-threshold) laser annealing in doped hydrogenated amorphous silicon films (a-Si:H) on glass. In phosphorous-doped a-Si:H the Raman signal shows that recrystallization begins with the first laser pulse but the multiple pulses are needed to generate the highest hole concentrations of ∼6×1020 cm-3. In boron-doped a-Si:H the electron concentration reaches ∼1×1021 cm-3 after laser anneal which produces a dip rather than a peak near the phonon line as a consequence of a negative Fano-interference parameter, q. The results show that Raman scattering can be used to obtain carrier concentrations in poly-silicon provided that wavelength-dependent Fano interference effects are properly included. © 1994.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)