Browsing by Subject "Modulation"
Now showing 1 - 20 of 24
- Results Per Page
- Sort Options
Item Open Access All-fiber all-normal dispersion laser with a fiber-based Lyot filter(Optical Society of America, 2010-04-15) Özgören, K.; Ilday, F. Ö.We propose the use of a short section of polarization-maintaining fiber as a birefringent medium to construct an all-fiber Lyot filter inside the cavity of a fiber laser. This allows mode-locked operation of an all-fiber all-normal dispersion Yb-fiber oscillator without the use of a bulk bandpass filter and using standard components. Moreover, filter bandwidth and modulation depth is easily controlled by changing the length and splice angle of the polarization-maintaining-fiber section, leading to an adjustable filter. At mode-locked operation, the 30% output fiber port delivers 1nJ pulses that are dechirped to 230 fs duration.Item Open Access Analysis of an Adaptive Modulation and Coding scheme with HARQ for TCP traffic(IEEE, 2015-04) Öztürk, Onur; Akar, NailIn this paper, we analyze the aggregate TCP throughput performance of a wireless link utilizing Active Queue Management (AQM) and an Adaptive Modulation and Coding (AMC) scheme with Hybrid ARQ (HARQ) based on the probability of failure in the first transmission attempt. We assume packets arriving out-of-order at the wireless receiver due to random retransmissions are resequenced before being released to the network. For this reason, an approximate model for the delay experienced at the resequencing buffer is also presented. In the light of the results obtained from the presented analysis, we propose a threshold for the aforementioned probability of failure making the investigated AMC scheme work at an overall performance close to that of the optimum policy. © 2015 IEEE.Item Open Access Balancing gain narrowing with self phase modulation: 100-fs, 800-nJ from an all-fiber-integrated Yb amplifier(IEEE, 2013) Pavlov, Ihor; Rybak, A.; Cenel, C.; İlday, F. ÖmerThere is much progress in Yb-fiber oscillator-amplifier systems, which enable generation of high-repetition-rate, microjoule energies and sub-picosecond pulse widths [1,2]. Given the extremely large total gain factors to reach microjoules starting from nanojoules, which is often in the range of 40-60 dB, due to losses, and the impact of mismatched high-order dispersion as temporal stretching and compression of pulses by large factors (30-40 dB) need to be employed. As a result of these challenges, most of the Yb-fiber amplifiers have resulted in pulse durations of several 100 fs or longer. While pulse durations in this range are suited for some applications, there are many cases where 100-fs or shorter pulses in microjoule range are required. Gain narrowing can be effectively countered by self-phase modulation (SPM) [3] by limiting amplification factor in each stage of amplification and through careful optimization of SPM and inversion level along the gain fiber. The conceptual template is readily present in the evolution of the pulse inside the oscillator cavity, where gain factors are often in the 10-50 range per roundtrip. To the extend that the B-integral and the gain distribution along the amplifier can be kept identical to the oscillator by proper scaling of the chirped pulse width and fiber mode area, the original oscillator can be preserved in arbitrary number of amplification stages. Here, we demonstrate a highly fiber-integrated master-oscillator power-amplifier (MOPA) system, from which - 1 μJ pulses are extracted and externally compressed to 100 fs by arranging amplification in each stage as close as possible to the intra-cavity evolution. To our knowledge, these results are the shortest demonstrated from all-fiber-integrated amplifier at the microjoule level. © 2013 IEEE.Item Open Access Broadband terahertz modulators using self-gated graphene capacitors(Optical Society of America, 2015) Kakenov, N.; Balci, O.; Polat, E. O.; Altan, H.; Kocabas, C.We demonstrate a terahertz intensity modulator using a graphene supercapacitor which consists of two large-area graphene electrodes and an electrolyte medium. The mutual electrolyte gating between the graphene electrodes provides very efficient electrostatic doping with Fermi energies of 1 eV and a charge density of 8 × 1013 cm-2. We show that the graphene supercapacitor yields more than 50% modulation between 0.1 and 1.4 THz with operation voltages less than 3 V. The low insertion losses, high modulation depth over a broad spectrum, and the simplicity of the device structure are the key attributes of graphene supercapacitors for THz applications.Item Open Access Broadband THz modulators based on multilayer graphene on PVC(IEEE, 2016) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.In this study we present the direct terahertz time-domain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V. We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The observed modulation bandwidth in terahertz frequencies appears to be instrument limited.Item Open Access Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site(2009) Guliyev, R.; Coskun, A.; Akkaya, E. U.Excitation energy transfer, when coupled to an ion-modulated ICT chromophore, creates novel opportunities in sensing. The direction of energy transfer and the point of ICT modulation can be varied as desired. In our previous work, we have shown that energy transfer efficiency between two energetically coupled fluorophores will be altered by the metal ion binding to the ICT chromophore carrying a ligand. There are two beneficial results: increased pseudo-Stokes shift and expanded dynamic range. Here, we explored the consequences of the modulation of energy transfer efficiency at the energy donor site, in a molecular design which has an ICT type metal ion-sensitive chromophore placed as the energy donor in the dyad. Clear advantages emerge compared to the acceptor site modulation: unaltered emission wavelength in the red end of the visible spectrum, while keeping a large Stokes shift and the ratiometric character. © 2009 American Chemical Society.Item Open Access Effect of the superconductivity transition on the response of YBCO edge transition bolometers(2003) Bozbey, Ali; Fardmanesh, Mehdi; Askerzade, I. N.; Banzet, M.; Schubert, J.Dependence of the phase and magnitude of the response of Y-Ba-Cu-O edge transition bolometers on the superconducting transition is studied. The responses of both large and small area devices were investigated and several anomalies are observed. The response of small area LaAlO3 devices considerably differed from that expected based on the dR/dT curve. This discrepancy is observed to be strongly dependent on the superconducting transition. Both the phase and magnitude/(dR/dT) of the response of the devices showed abrupt changes for below the Tc-onset when measured versus temperature, while the phase variation also showed strong dependence on the modulation frequency. We present the analysis and propose mechanisms responsible for the modulation frequency dependence of the response characteristics versus temperature, within the superconductivity transition region of the devices.Item Open Access Electro-optic modulation of InAs quantum dot waveguides(Technische Universiteit Eindhoven, 2008) Akça, İmran. B.; Dâna, Aykutlu; Aydınlı, Atilla; Rossetti, M.; Li, L.; Fiore, A.; Dağlı, N.The linear electro-optic properties in waveguides containing self-organized In As quantum dots were studied experimentally. Fabry-Perot measurements at 1515 nm on InAs/GaAs quantum dot structures yield a significantly enhanced linear electro-optic efficiency compared to bulk GaAs.Item Open Access Generation of soliton molecules with independently evolving phase in a mode-locked fiber laser(Optical Society of America, 2010) Ortaç, Bülend; Zaviyalov, A.; Nielsen, C.K.; Egorov, O.; Iliew, R.; Limpert, J.; Lederer, F.; Tünnermann, A.We report the experimental generation of two-soliton molecules in an ytterbium-doped fiber laser. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80%. © 2010 Optical Society of America.Item Open Access Influence of modulation of pump and seed signals on fiber amplification of broadband pulses(OSA, 2011) Gürel, Kutan; Elahi, Parviz; Budunoğlu, İbrahim Levent; Şenel, Çağrı; Paltani, Punya Prasanna; İlday, Fatih ÖmerWe report on characterization of the transfer of pump and seed signal modulations, including noise, during fiber amplification. We demonstrate experimentally and theoretically that pump (signal) modulations are transferred only below (above) a cut-off frequency.Item Open Access Influence of pump noise and modulation on in-fiber amplification of broadband pulses(Optical Society of America, 2011) Gürel, Kutan; Budunoğlu, İbrahim Levent; Şenel, Çağrı; Paltani, Punya Prasanna; İlday, F. ÖmerWe investigate experimentally and theoretically the coupling of pump laser modulation and noise fluctuations to the output power of a fiber amplifier for broadband pulse trains using the modulation transfer function approach. © 2010 Optical Society of America.Item Open Access Investigation of bias current and modulation frequency dependences of detectivity of YBCO TES and the effects of coating of Cu-C composite absorber layer(2009) Moftakharzadeh, A.; Kokabi, A.; Bozbey, A.; Ghodselahi, T.; Vesaghi, M.A.; Khorasani, S.; Banzet, M.; Schubert J.; Fardmanesh, M.Bolometric response and noise characteristics of YBCO superconductor transition edge IR detectors with relatively sharp transition and its resulting detectivity are investigated both theoretically and experimentally. The magnitude of response of a fabricated device was obtained for different bias currents and modulation frequencies. Using the measured and calculated bolometric response and noise characteristics, we found and analyzed the device detectivity versus frequency for different bias currents. The detectivity versus chopping frequency of the device did not decrease following the response strongly, due to the decrease of the noise at higher frequencies up to 1 kHz, resulting in maximum detectivity around the modulation frequency of 100 Hz. We also improved the responsivity of the device through the increase of the surface absorption by using a novel infrared absorber, which is made of a copper-carbon composite, coated in a low-temperature process. Within the modulation frequency range studied in this paper, comparison of device detectivity before and after coating is also presented. © 2009 IEEE.Item Open Access Lasing in a Slow Plasmon Moiré Cavity(American Chemical Society, 2015) Karademir, E.; Balci, S.; Kocabas, C.; Aydınlı, AtillaWe report on lasing from dye-based excitons coupled to slow plasmon states inside metallic Moiré cavities. Surface plasmon polaritons (SPPs) inside the cavity were slowed down to a maximum group velocity of 0.3c. Varying the modulation of the Moiré cavity, we tune the output wavelength of the plasmonic laser by varying the fast modulation period of the Moiré cavity. This work opens a new way to study SPP-matter interaction dynamics and plasmonic lasing with Bragg cavity confined slow plasmons.Item Open Access Lineshapes, shifts and broadenings in dynamical X-ray photoelectron spectroscopy(2009) Dâna, A.We describe in detail a model that can be used to estimate the X-ray photoelectron spectroscopic data of surfaces when a time varying bias or a modulation of the electrical properties of the surface is applied by external stimulation, in the presence of a neutralizing electron beam. Using the model and spectra recorded under periodic sample bias modulation, certain electronic properties related to charging dynamics of the surface can be estimated. The resulting technique is a non-contact impedance measurement technique with chemical specificity. Typical behavior of spectra under a square wave bias is given. Alternative modulation schemes are investigated, including small-signal square wave modulation, sinusoidal modulation and modulation of sample resistivity under fixed bias. © 2009 Elsevier B.V. All rights reserved.Item Open Access Low power range estimation with DSSS technique in underwater acoustics(2013) Güleryüz, Mustafa OzanPerformance of direct sequence spread spectrum modulation (DSSS) in underwater acoustical range finding is investigated in this thesis. Range estimation using low power DSSS codes is both analyzed theoretically and implemented at 400 kHz for experimental assessment, where the chip duration is 20 µs and sequence type is maximal. The effect of sequence length on the required transmit power is measured for sequence lengths from 7 chips to 127 chips. The performance of this method is compared to the widely used tone burst pulse range estimation technique. It is found that at a sequence of 127 chips and a pulse sequence length of 2,54 ms, range is estimated with 1,5 cm resolution using source level of 132,8 dB re 1 µP arms @ 1 m source level , while it is 190,5 cm for the same length and magnitude tone burst modulation, at a reference test range of 4.5 m. Moreover, spectral height of received DSSS signal is well below the ambient noise level so that signal to noise ratio (SNR) for received DSSS signal is -14,8 dB, while it is 12,2 dB for received tone burst pulseItem Open Access Mode shift keying for reconfigurable MIMO antennas: performance analysis and antenna design(IEEE, 2019-01) Hasan, M.; Bahçeci, İsrafil; Towfiq, Md. A.; Duman, Tolga M.; Çetiner, B. A.Space-shift-keying (SSK) and spatial modulation (SM) enable multiple antenna transmission systems to convey information on antenna indices. While SSK/SM helps reduce the number of radio frequency (RF) chains, large numbers of antennas and low spatial correlations are required to achieve high data rates. This work investigates the use and design of multifunctional reconfigurable antennas (MRAs) for SSK/SM based transmission where a single-element MRA generates large numbers of modes. To enhance legacy SSK/SM performance while reducing RF hardware complexity, we propose single- and multi-carrier antenna mode-shift keying (MoSK) and mode modulation (MoM) schemes facilitated by MRAs. Based on an error probability analysis, we determine criteria for MRA design and mode set selection suitable for MoSK/MoM. We also develop two MRA designs and investigate their performances over Rayleigh fading channels. We argue that by creating MRA modes with low pattern correlations, channel correlations can be reduced to improve the detection performance. Extensive simulations demonstrate that MoSK/MoM performance exceeds that of SSK/SM along with significant complexity reduction. For instance, a single-carrier MoSK/MoM using a single MRA with 8 modes achieves about 2 dB gain compared to legacy SSK/SM requiring 8 antennas, and by multi-carrier MoSK/MoM using 4 subcarriers, an MRA with 32 modes can attain an error rate performance comparable to this single-carrier system.Item Open Access Modulation behaviors, conductivities, and carrier dynamics of single and multilayer graphenes(IEEE Computer Society, 2019) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.Time domain and time resolved terahertz studies of single- and multi-layer graphene (SLG and MLG) samples and modulator devices will be presented. A high performance up to 100% of modulators were observed with the devices even at very low voltages. High modulation depth over such a broad spectrum and simple device structure brings significant importance toward application of this type of device in THz and related technologies. In addition, conductivities of SLG and MLG devices were also investigated and a change in behavior was observed as the layer thickness increased. The charge carriers dynamics of the samples with pulp fluence and color was also highly interesting.Item Open Access Modulation in InAs quantum dot waveguides(Optical Society of America, 2007) Akca, B. Imran; Dana, Aykutlu; Aydınlı, Atilla; Rossetti, M.; Li L.; Fiore, A.; Dagli, N.Modulation in molecular beam epitaxy grown self-assembled InAs quantum dot waveguides have been studied at 1500 nm as a function of wavelength and voltage. Enhanced electro-optic coefficients compared to bulk GaAs were observed. © 2007 Optical Society of America.Item Open Access Modulation of multilayer InAs quantum dot waveguides under applied electric field(Optical Society of America, 2007) Akça, Imran B.; Dana, Aykutlu; Aydınlı, Atilla; Rossetti, M.; Li L.; Fiore, A.; Dagli, N.Electric field dependence of optical modulation in self assembled InAs quantum dot waveguides have been studied at 1300 and 1500 nm. Electro-absorption and electro-optic coefficients of these waveguides have been obtained at both wavelengths. © 2007 Optical Society of America.Item Open Access A novel queue-aware wireless link adaptation mechanism and its fixed-point analytical model(SpringerOpen, 2015) Ozturk, O.; Akar, N.A point-to-point (PTP) wireless link is studied that carries long-lived TCP flows and is controlled with active queue management (AQM). A cross-layer queue-aware adaptive modulation and coding (AMC)-based link adaptation (LA) mechanism is proposed for this wireless link to improve the TCP-level throughput relative to the case where AMC decisions are made based solely on the physical layer (PHY) parameters. The proposed simple-to-implement LA mechanism involves the use of an aggressive modulation and coding scheme (MCS) with high spectral efficiency and high block error rates when the queue occupancy exceeds a certain threshold, but otherwise a relatively conservative MCS with lower spectral efficiency and lower block error rates. A fixed-point analytical model is proposed to obtain the aggregate TCP throughput attained at this wireless link and the model is validated by ns-3 simulations. Numerical experimentation with the proposed analytical model applied to an IEEE 802.16-based wireless link demonstrates the effectiveness of the proposed queue-aware LA (QAWLA) mechanism in a wide variety of scenarios including cases where the channel information is imperfect. The impact of the choice of the queue occupancy threshold of QAWLA is extensively studied with respect to the choice of AQM parameters in order to provide engineering guidelines for the provisioning of the wireless link.