BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Fermi level"

Filter results by typing the first few letters
Now showing 1 - 20 of 22
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ab-initio electron transport calculations of carbon based string structures
    (American Physical Society, 2004) Tongay, S.; Senger, R. T.; Dag, S.; Çıracı, Salim
    The new stable structures of carbon-based strings and their unusual electronic transport properties were discussed. Total energy and electronic structure calculations using first principles pseudopotential plane wave method within density functional theory (DFT) and supercell geometries were also carried out. It was found that carbon chains were suitable for structural and chemical functionalizations because of their flexibility. These carbon chains also form stable ring, helix, grid and network structures. The results show that the double covalent bonding of carbon atoms underlies their unusual chemical, mechanical and transport properties and carbon chains can form stable string structures with impressive physical properties.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic strings of group IV, III-V, and II-VI elements
    (American Institute of Physics, 2004) Tongay, S.; Durgun, Engin; Çıracı, Salim
    A systematic first-principles study of atomic strings made by group IV, III-V, and II-VI elements has revealed interesting mechanical, electronic, and transport properties. The double bond structure underlies their unusual properties. We found that linear chain of C, Si, Ge, SiGe, GaAs, InSb, and CdTe are stable and good conductor, although their parent diamond (zincblende) crystals are covalent (polar) semiconductors but, compounds SiC, BN, AlP, and ZnSe are semiconductors. First row elements do not form zigzag structures.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Band alignment issues in metal/dielectric stacks: a combined photoemission and inverse photoemission study of the HfO 2/Pt and HfO 2/Hf systems
    (Electrochemical Society, 2004) Sayan, S.; Bartynski, R.A.; Robertson J.; Suehle, J. S.; Vogel, E.; Nguyen, N. V.; Ehrstein, J.; Kopanski, J. J.; Süzer, Şefik; Holl, M. B.; Garfunkel, E.
    We have studied the HfO 2/Hf and HfO 2/Pt systems by photoemission and inverse photoemission spectroscopies. It is found that the "effective workfunction" of metals in multilayer structures are different than their vacuum workfunctions and are modified by their interface dipoles at the metal/high-k interface. The effective workfunction of Hf is 4.4 eV whereas that of Pt is 5.3 eV, within the range of acceptable values for PMOS and NMOS respectively.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Band Structure and Optical Properties of Kesterite Type Compounds: First principle calculations
    (Institute of Physics Publishing, 2017) Palaz S.; Unver H.; Ugur G.; Mamedov, Amirullah; Özbay, Ekmel
    In present work, our research is mainly focused on the electronic structures, optical and magnetic properties of Cu2FeSnZ4 (Z = S, Se) compounds by using ab initio calculations within the generalized gradient approximation (GGA). The calculations are performed by using the Vienna ab-initio simulation package (VASP) based on the density functional theory. The band structure of the Cu2FeSnZ4 ( Z = S, Se) compounds for majority spin (spin-up) and minority spin (spin-down) were calculated. It is seen that for these compounds, the majority spin states cross the Fermi level and thus have the metallic character, while the minority spin states open the band gaps around the Fermi level and thus have the narrow-band semiconducting nature. For better understanding of the electronic states, the total and partial density of states were calculated, too. The real and imaginary parts of dielectric functions and hence the optical functions such as energy-loss function, the effective number of valance electrons and the effective optical dielectric constant for Cu2FeSnZ4 (Z = S, Se) compounds were also calculated. © Published under licence by IOP Publishing Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Chiral single-wall gold nanotubes
    (American Physical Society, 2004) Senger, R. T.; Dag, S.; Çıracı, Salim
    The formation of freestanding and tip-suspended chiral-wall (n,m) nanotubes, which were composed of helical atomic strands, from gold atoms was investigated using first-principles calculations, where (n,m) notation defines the structure of the tube. The tubes with 3≤n≤5 were found to be stable and exhibited electronic and transport properties investigated. The (5,3) gold tube was energetically the most favourable. It was observed from the quantum ballistic conductance, band structure and charge density analysis that the current on these wires was less chiral, and no direct correlation between the numbers of conduction channels and helical strands was found.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effective mass enhancement in two-dimensional electron systems: The role of interaction and disorder effects
    (Elsevier, 2004) Asgari, R.; Davoudi, B.; Tanatar, Bilal
    Recent experiments on two-dimensional (2D) electron systems have found a sharp increase in the effective mass of electrons with decreasing electron density. In an effort to understand this behavior we employ the many-body theory to calculate the quasiparticle effective mass in 2D electron systems. Because the low density regime is explored in the experiments we use the GWγ approximation where the vertex correction γ describes the correlation effects to calculate the self-energy from which the effective mass is obtained. We find that the quasiparticle effective mass shows a sharp increase with decreasing electron density. Disorder effects due to charged impurity scattering plays a crucial role in density dependence of effective mass.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of anisotropy on the critical temperature in layered nonadiabatic superconductors
    (Elsevier Science B.V., 2003) Askerzade, I. N.; Tanatar, Bilal
    The generalized anisotropic Eliashberg theory is employed to study the critical temperature of layered nonadiabatic superconductors where the relevant phonon energy is comparable to the Fermi energy. We consider a two-dimensional model appropriate for cuprate compounds and recently discovered superconductor magnesium-diboride (MgB2) which also reveals layered structure. By using the McMillan approximation we present the result of calculations of critical temperature Tc. It is shown that the critical temperature is enhanced due to the influence of anisotropy and nonadiabaticity.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic structure of half-metallic ferromagnet Co2MnSi at high-pressure
    (Springer New York LLC, 2010) Gökoǧlu, G.; Gülseren, O.
    In this study, first principles calculation results of the half-metallic ferromagnetic Heusler compound Co2MnSi are presented. All calculations are based on the spin-polarized generalized gradient approximation (σ-GGA) of the density functional theory and ultrasoft pseudopotentials with plane wave basis. Electronic structure of related compound in cubic L21 structure is investigated up to 95 GPa uniform hydrostatic pressure. The half-metal to metal transition was observed around ∼70 GPa together with downward shift of the conduction band minimum (CBM) and a linear increase of direct band gap of minority spins at Γ-point with increasing pressure. The electronic density of states of minority spins at Fermi level, which are mainly due to the cobalt atoms, become remarkable with increasing pressure resulting a sharp decrease in spin polarization ratio. It can be stated that the pressure affects minority spin states rather than that of majority spins and lead to a slight reconstruction of minority spin states which lie below the Fermi level. In particular, energy band gap of minority spin states in equilibrium structure is obviously not destroyed, but the Fermi level is shifted outside the gap.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic structure of the contact between carbon nanotube and metal electrodes
    (American Institute of Physics, 2003) Dag, S.; Gülseren, O.; Çıracı, Salim; Yildirim, T.
    Our first-principles study of the contact between a semiconducting single-walled carbon nanotube ~s-SWNT! and metal electrodes shows that the electronic structure and potential depend strongly on the type of metal. The s-SWNT is weakly side-bonded to the gold surface with minute charge rearrangement and remains semiconducting. A finite potential barrier forms at the contact region. In contrast, the molybdenum surface forms strong bonds, resulting in significant charge transfer and metallicity at the contact. The radial deformation of the tube lowers the potential barrier at the contact and increases the state density at the Fermi level.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic structure, insulator-metal transition and superconductivity in K-ET2X salts
    (1998) Ivanov V.A.; Ugolkova, E.A.; Zhuravlev, M.Ye.; Hakioǧlu, T.
    The electronic structure and superconductivity of layered organic materials based on the bis(ethylenedithio)tetrathiafulvalene molecule (BEDT-TTF, hereafter ET) with essential intra-ET correlations of electrons are analysed. Taking into account the Fermi surface topology, the superconducting electronic density of states (DOS) is calculated for a realistic model of K-ET2X salts. A d-symmetry of the superconducting order parameter is obtained and a relation is found between its nodes on the Fermi surface and the superconducting phase characteristics. The results are in agreement with the measured non-activated temperature dependences of the superconducting specific heat and NMR relaxation rate of central 13C atoms in ET. © 1998 John Wiley & Sons, Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electrostatic force spectroscopy of near surface localized states
    (Institute of Physics Publishing Ltd., 2005) Dâna, A.; Yamamoto, Y.
    Electrostatic force microscopy at cryogenic temperatures is used to probe the electrostatic interaction of a conductive atomic force microscopy tip and electronic charges trapped in localized states in an insulating layer on a semiconductor. Measurement of the frequency shift of the cantilever as a function of tip-sample bias voltage shows discrete peaks at certain voltages when the tip is located near trap centres. These discrete changes in frequency are attributed to one by one filling of individual electronic states when the quantized energies traverse the substrate conduction band Fermi energy as the tip-sample voltage is increased. Theoretical analysis of the experiment suggests that such a measurement of the cantilever frequency shift as a function of bias voltage can be interpreted as an AC force measurement, from which spectroscopic information about the location and energy of localized states can be deduced. Experimental results from the study of a sample with InAs quantum dots as trap centres are presented.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fermi level pinning ınduced by doping in air stable n type organic semiconductor
    (American Chemical Society, 2020) Sharma, S.; Ghosh, S.; Ahmed, T.; Ray, S.; Islam, S.; Salzner, Ulrike; Ghosh, A.; Seki, S.; Patil, S.
    Doping of organic semiconductors enhances the performance of optoelectronic devices. Although p-type doping is well studied and successfully deployed in optoelectronic devices, air stable ntype doping was still elusive. We succeeded with n-type doping of organic semiconductors using molecular dopant N-DMBI under ambient conditions. Strikingly, n-type doping accounts for a gigantic increase of the photoconductivity of doped thin films. Electrical and optical properties of the n-doped molecular semiconductor were investigated by temperature dependent conductivity, electron paramagnetic resonance (EPR), and flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements. A significant reduction and saturation in activation energy with increasing doping level clearly suggests the formation of an impurity band and enhancement in carrier density. Computational studies reveal the formation of a charge transfer complex mediated by hydrogen abstraction as the rate-determining step for the doping mechanism. The colossal enhancement of photoconductivity induced by n-doping is a significant step toward optoelectronic devices made of molecular semiconductors.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Local current distribution at large quantum dots (QDs): A self-consistent screening model
    (Elsevier B.V., 2008) Krishna, P. M.; Siddiki, A.; Güven, K.; Hakioǧlu T.
    We report the implementation of the self-consistent Thomas-Fermi screening theory, together with the local Ohm's law to a quantum dot system in order to obtain local current distribution within the dot and at the leads. We consider a large dot (size > 700 nm) defined by split gates, and coupled to the leads. Numerical calculations show that the non-dissipative current is confined to the incompressible strips. Due to the non-linear screening properties of the 2DES at low temperatures, this distribution is highly sensitive to external magnetic field. Our findings support the phenomenological models provided by the experimental studies so far, where the formation of the (direct) edge channels dominate the transport.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Monte Carlo simulation of electron transport in degenerate and inhomogeneous semiconductors
    (A I P Publishing LLC, 2007) Zebarjadi, M.; Bulutay, C.; Esfarjani, K.; Shakouri, A.
    An algorithm is proposed to include Pauli exclusion principle in Monte Carlo simulations. This algorithm has significant advantages to implement in terms of simplicity, speed, and memory storage; therefore it is ideal for the three-dimensional device simulators. The authors show that even in moderately high applied fields, one can obtain the correct electronic distribution. They give the correct definition for electronic temperature and show that in high applied fields, the quasi-Fermi level and electronic temperature become valley dependent. The effect of including Pauli exclusion principle on the band profile, electronic temperature, and quasi-Fermi level for the inhomogeneous case of a single barrier heterostructure is illustrated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene
    (American Chemical Society, 2016) Kakenov, N.; Balci, O.; Takan, T.; Ozkan, V. A.; Altan, H.; Kocabas, C.
    We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 99%. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Parity effect in mesoscopic and nanoscopic superconducting particles
    (Elsevier B.V., 2001) Kulik, I. O.; Boyaci, H.; Gedik, Z.
    Superconductivity in small metallic specimens is studied with regard to the size dependence of the parity gap (ΔP), a parameter distinguishing between the energy of even and odd number of electrons in the granule. ΔP is shown to be an increasing function of level spacing δ. The energy gap of superconductor Δ, on the other hand, decreases with increasing δ and vanishes at δ = δc which is of the order of Δ. However, non-zero value of ΔP persists above δc in a gapless superconducting-insulating state. Level degeneracy in small specimens having perfect geometry changes the size dependence of the parity gap, the Josephson effect, and flux quantization. Parity gap is evaluated using an interpolation procedure between the continuum limit (δ ≪ Δ), the moderate mesoscopic regime (δ ∼ Δ), and the nanoscopic scale (δ ≫ Δ), for which an exact solution to the pairing problem is provided with the numeric diagonalization of system Hamiltonian in a small metallic cluster
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum transport through one-dimensional aluminum wires
    (American Vacuum Society, 2002) Batra, I. P.; Sen, P.; Çıracı, Salim
    Quantum conductance in narrow channels has been well understood by using the two-dimensional electron gas, a model system which has been realized in semiconductor heterojunctions. An essential property of this electron gas is its ability to support a constriction of width comparable to the Fermi wavelength, a property not shared by even thin metal films. The advent of scanning tunneling microscope has made possible the fabrication of metallic wires of atomic widths. We investigate one-dimensional wires consisting of aluminum atoms, to be specific. Using the first-principles density functional calculations, we obtain the optimal structures and report the bonding as deduced from the charge density analysis. With the calculated electronic structure in hand, we discussed the quantum ballistic transport using channel capacity arguments motivated by the Heisenberg’s uncertainty principle. By comparing our results with the detailed pioneering calculations by Lang, we inferred an average value for channel transmitivity and touched upon material specific contact resistance. Finally, the validity of the Wiedemann–Franz law in the quantum domain is established by studying thermal conductance in nanowires.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quasi-particle properties in a quasi-two-dimensional electron liquid
    (Indian Academy of Sciences, 2008) Asgari, R.; Tanatar, Bilal
    We consider the quasi-particle properties such as the effective mass and spin susceptibility of quasi-two-dimensional electron systems. The finite quantum well width effects are incorporated into the local-field factors that describe the charge and spin correlations. We employ the Fermi-hypernetted chain formalism in conjunction with fluctuation-dissipation theorem to obtain the local-field factors. Our results are in good agreement with recent experiments.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A self-consistent microscopic model of Coulomb interaction in a bilayer system as an origin of Drag Effect Phenomenon
    (Elsevier B.V., 2008) Güven, K.; Siddiki, A.; Krishna, P. M.; Hakioǧlu T.
    In this work we implement the self-consistent Thomas-Fermi model that also incorporates a local conductivity model to an electron-electron bilayer system, in order to describe novel magneto-transport properties such as the Drag Phenomenon. The model can successfully account for the poor screening of the potential within the incompressible strips and its impact on the inter-layer Coulomb interaction. An externally applied current in the active layer results in the tilting of the Landau levels and built-up of a Hall potential across the layer, which, in turn, induces a tilted potential profile in the passive layer as well. We investigate the effect of the current intensity, temperature, magnetic field, and unequal density of layers on the self-consistent density and potential profiles of the bilayer system.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Soft x-ray photoemission studies of Hf oxidation
    (A I P Publishing LLC, 2003) Süzer, Şefik; Sayan, S.; Banaszak Holl, M. M.; Garfunkel, E.; Hussain, Z.; Hamdan, N. M.
    Charging of oxide films under x rays is an important issue that must be taken into consideration for determination of core-level binding energies as well as valence band offsets. Measurements are taken as a function of time, thickness, and annealing condition. Photoemission results show the presence of metallic Hf with the 4f7/2 binding energy of 18.16 eV, and at least one clear suboxide peak.
  • «
  • 1 (current)
  • 2
  • »

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback