Electronic structure of the contact between carbon nanotube and metal electrodes
Date
2003
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Applied Physics Letters
Print ISSN
0003-6951
Electronic ISSN
Publisher
American Institute of Physics
Volume
83
Issue
15
Pages
3180 - 3182
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
1
views
views
18
downloads
downloads
Series
Abstract
Our first-principles study of the contact between a semiconducting single-walled carbon nanotube ~s-SWNT! and metal electrodes shows that the electronic structure and potential depend strongly on the type of metal. The s-SWNT is weakly side-bonded to the gold surface with minute charge rearrangement and remains semiconducting. A finite potential barrier forms at the contact region. In contrast, the molybdenum surface forms strong bonds, resulting in significant charge transfer and metallicity at the contact. The radial deformation of the tube lowers the potential barrier at the contact and increases the state density at the Fermi level.