Browsing by Subject "Thin films"
Now showing 1 - 20 of 87
- Results Per Page
- Sort Options
Item Open Access Analytic thermal modeling for dc-to-midrange modulation frequency responses of thin-film high-Tc superconductive edge-transition bolometers(Optical Society of America, 2001) Fardmanesh, M.Thin-film superconductive edge-transition bolometers are modeled with a one-dimensional analytic thermal model with joule heating, film and substrate materials, and the physical interface effects taken into consideration. The results from the model agree well with the experimental results of samples made of large-meander-line Yba2Cu3O7-x films on crystalline SrTiO3, LaAlO3, and MgO substrates up to 100 kHz, the limits of the experimental setup. Compared with the results of the SrTiO3 substrate samples, the results from the model of the LaAlO3 and the MgO substrate samples deviate slightly from the measured values at very low modulation frequencies (below ∼10 Hz). The deviation increases for higher thermal-conductive substrate materials. When the model was used, the substrate absorption and the thermal parameters of the devices could also be investigated. © 2001 Optical Society of America.Item Open Access Area-selective atomic layer deposition using an inductively coupled plasma polymerized fluorocarbon layer: A case study for metal oxides(American Chemical Society, 2016) Haider, A.; Deminskyi, P.; Khan, T. M.; Eren, H.; Bıyıklı, NecmiArea-selective atomic layer deposition (AS-ALD) has attracted immense attention in recent years for self-aligned accurate pattern placement with subnanometer thickness control. Here, we demonstrate a methodology to achieve AS-ALD by using inductively couple plasma (ICP) grown fluorocarbon polymer film as hydrophobic blocking layer for selective deposition. Our approach has been tested for metal-oxide materials including ZnO, Al2O3, and HfO2. Contact angle, X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometer, and scanning electron microscopy (SEM) measurements were performed to investigate the blocking ability of plasma polymerized fluorocarbon layers against ALD-grown metal-oxide films. A considerable growth inhibition for ZnO has been observed on fluorocarbon coated Si(100) surfaces, while the same polymerized surface caused a relatively slow nucleation for HfO2 films. No growth selectivity was obtained for Al2O3 films, displaying almost the same nucleation behavior on Si and fluorocarbon surfaces. Thin film patterning has been demonstrated using this strategy by growing ZnO on lithographically patterned fluorocarbon/Si samples. High resolution SEM images and XPS line scan confirmed the successful patterning of ZnO up to a film thickness of ∼15 nm. © 2016 American Chemical Society.Item Open Access An array of surface-enhanced Raman scattering substrates based on plasmonic lenses(Wiley, 2012-10-01) Kahraman, M.; Cakmakyapan, S.; Özbay, Ekmel; Culha, M.An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. Either the diameter of the hole (0.5, 1.0, 2.0, 3.0 and 4.0 μm) or the slit width (200, 300, 400, 500 and 600 nm) is varied. 4-Aminothiophenol (ATP) adsorbed on the structures as a self-assembled monolayer (SAM) is used as probe to evaluate the SERS performance of the generated structures. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit width. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film. An array of these structures at this optimal configuration can easily be constructed and used in a range of SERS-based sensing applications. An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit with. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film.Item Open Access Assembly of molten transition metal salt surfactant in a confined space for the synthesis of mesoporous metal oxide-rich metal oxide silica thin films(2011) Karakaya, C.; Türker, Y.; Albayrak, C.; Dag, Ö.Uniform and homogeneous coating of mesoporous materials with an active (catalytically, photonic, electrical) nanostructure can be very useful for a number of applications. Understanding chemical reactions in a confined space is important in order to design new advanced materials. In this work, we demonstrate that an extensive amount (as high as 53 mol percent) of transition metal salts can be confined between silica walls and two surfactant domains (cetyltrimethylammonium bromide, CTAB, and lauryl ether, C12H25(OCH2CH2)10OH, C12EO10) as molten salts and then converted into sponge-like mesoporous silica–metal oxides by thermal annealing. This investigation has been carried out using two different salts, namely, zinc nitrate hexahydrate, [Zn(H2O)6](NO3)2, and cadmium nitrate tetrahydrate, [Cd(H2O)4](NO3)2, in a broad range of salt concentrations. The ZnO (or CdO) layers are as thin as about ∼1.6 nm and are homogenously coated as crystalline nano-islands over the silica pore walls.Item Open Access Atomic Layer Deposition for Vertically Integrated ZnO Thin Film Transistors: Toward 3D High Packing Density Thin Film Electronics(Wiley-VCH Verlag, 2017) Sisman, Z.; Bolat, S.; Okyay, Ali KemalWe report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors(Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.Item Open Access Atomic-layer-deposited zinc oxide as tunable uncooled infrared microbolometer material(Wiley-VCH Verlag, 2014) Battal, E.; Bolat, S.; Tanrikulu, M. Y.; Okyay, Ali Kemal; Akin, T.ZnO is an attractive material for both electrical and optical applications due to its wide bandgap of 3.37 eV and tunable electrical properties. Here, we investigate the application potential of atomic-layer-deposited ZnO in uncooled microbolometers. The temperature coefficient of resistance is observed to be as high as-10.4% K-1 near room temperature with the ZnO thin film grown at 120 °C. Spectral noise characteristics of thin films grown at various temperatures are also investigated and show that the 120 °C grown ZnO has a corner frequency of 2 kHz. With its high TCR value and low electrical noise, atomic-layer-deposited (ALD) ZnO at 120 °C is shown to possess a great potential to be used as the active layer of uncooled microbolometers. The optical properties of the ALD-grown ZnO films in the infrared region are demonstrated to be tunable with growth temperature from near transparent to a strong absorber. We also show that ALD-grown ZnO can outperform commercially standard absorber materials and appears promising as a new structural material for microbolometer-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access A baseball-bat-like CdTe/TiO2 nanorods-based heterojunction core–shell solar cell(Elsevier, 2013) Karaagac, H.; Parlak, M.; Aygun, L. E.; Ghaffari, M.; Bıyıklı, Necmi; Okyay, Ali KemalRutile TiO2 nanorods on fluorine-doped thin oxide glass substrates via the hydrothermal technique were synthesized and decorated with a sputtered CdTe layer to fabricate a core-shell type n-TiO2/p-CdTe solar cell. Absorbance spectrum verified the absorption contribution of both TiO2 and CdTe to the absorption process. The solar cell parameters, such as open circuit voltage, short circuit current density, fill factor and power conversion efficiency were found to be 0.34 V, 1.27 mA cm-2, 28% and 0.12%, respectively. .Item Open Access Characterization of thermally poled germanosilicate thin films(Optical Society of American (OSA), 2004) Ozean, A.; Digonnet, M.J.F.; Kino G.S.; Ay F.; Aydınlı, AtillaWe report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ∼0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13-16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ∼1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge. ©2004 Optical Society of America.Item Open Access Charging / discharging of thin PS / PMMA films as probed by dynamic x-ray photoelectron spectroscopy(2007) Sezen, H.; Ertas, G.; Dâna, A.; Süzer, ŞefikPolystyrene / polymethyl methacrylate (PS-PMMA) thin films were analyzed for detecting phase separation as well as probing their electrical responses by XPS. It was also shown that electrical parameters like resistance or capacitance can also be extracted using dynamical XPS measurements. A Kratos ES300 electron spectrometer was used for XPS measurements, and a nearby filament provided low-energy electrons for charge neutralization. The results show that under a positive stress, low-energy electrons are attracted to the sample and yield less positive charge on the sample, due to partial neutralization.Item Open Access Charging/discharging dynamics of CdS and CdSe films under photoillumination using dynamic x-ray photoelectron spectroscopy(A I P Publishing LLC, 2010) Sezen, H.; Süzer, ŞefikThin films of CdS and CdSe are deposited on HF-cleaned Si O2 /Si substrates containing ∼5 nm thermally grown silicon oxide. x-ray photoelectron spectroscopy (XPS) data of these films are collected in a dynamic mode, which is based on recording the spectrum under modulation with an electrical signal in the form of ±10 V square-wave pulses. Accordingly, all peaks are twined and shifted with respect to the grounded spectrum. The binding energy difference between the twinned peaks of a dielectric system has a strong dependence on the frequency of the electrical stimuli. Therefore, dynamic XPS provides a means to extract additional properties of dielectric materials, such as effective resistance and capacitance. In this work, the authors report a new advancement to the previous method, where they now probe a photodynamic process. For this reason, photoillumination is introduced as an additional form of stimulus and used to investigate the combined optical and electrical response of the photoconductive thin films of CdS and CdSe using dynamic XPS.Item Open Access Comparative study of thin film n-i-p a-Si: H solar cells to investigate the effect of absorber layer thickness on the plasmonic enhancement using gold nanoparticles(Elsevier Ltd, 2015) Islam, K.; Chowdhury F.I.; Okyay, Ali Kemal; Nayfeh, A.In this paper, the effect of gold nanoparticles on n-i-p a-Si:H solar cells with different intrinsic layer (i-layer) thicknesses has been studied. 100nm and 500nm i-layer based n-i-p a-Si:H solar cells were fabricated and colloidal gold (Au) nanoparticles dispersed in water-based solution were spin-coated on the top surface of the solar cells. The Au nanoparticles are of spherical shape and have 100nm diameter. Electrical and quantum efficiency measurements were carried out and the results show an increase in short-circuit current density (Jsc), efficiency and external quantum efficiency (EQE) with the incorporation of the nanoparticles on both cells. Jsc increases from 5.91mA/cm2 to 6.5mA/cm2 (~10% relative increase) and efficiency increases from 3.38% to 3.97% (~17.5% relative increase) for the 100nm i-layer solar cell after plasmonic enhancement whereas Jsc increases from 9.34mA/cm2 to 10.1mA/cm2 (~7.5% relative increase) and efficiency increases from 4.27% to 4.99% (~16.9% relative increase) for the 500nm i-layer cell. The results show that plasmonic enhancement is more effective in 100nm than 500nm i-layer thickness for a-Si:H solar cells. Moreover, the results are discussed in terms of light absorption and electron hole pair generation. © 2015 Elsevier Ltd.Item Open Access Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films(Elsevier, 2007) Beyhan, S.; Süzer, Şefik; Kadırgan, F.The electrodeposition of CuInSe2 is investigated to improve the stoichiometric properties of CuInSe2 layers on indium tin oxide (ITO)-coated glass substrates and to develop one-step electrodeposition method for solar cell applications. XPS was utilized for the characterization of the surface properties of CuInSe2 layers. The influence of the complexing agent, e.g. benzotriazole, bulk concentration of Cu and Se and deposition potentials on the stoichiometric properties, are discussed. © 2007 Elsevier B.V. All rights reserved.Item Open Access Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum(2011) Kokabi, A.; Hosseini, M.; Saeedi, S.; Moftakharzadeh, A.; Vesaghi, M.A.; Fardmanesh, M.The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is derived, which leads to the derivation of the optical absorption spectrum in terms of ω 0 and ω 1. The dependency of the absorption peaks to the particle size and the particle mean spacing is also investigated. The absorption spectrum is measured for different Cu-C thin films with various Cu particle size and spacing. The experimental results of absorption are compared with the obtained analytical ones. © 2011 The Institution of Engineering and Technology.Item Open Access Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films(A I P Publishing LLC, 2015) Altuntas, H.; Ozgit Akgun, C.; Donmez, I.; Bıyıklı, NecmiHere, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200°C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2-21.5 MV/m), Schottky emission (23.6-39.5 MV/m), Frenkel-Poole emission (63.8-211.8 MV/m), trap-assisted tunneling (226-280 MV/m), and Fowler-Nordheim tunneling (290-447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.Item Open Access DC characteristics of patterned YBa/sub 2/Cu/sub 3/O/sub 7-x/ superconducting thin-film bolometers: artifacts related to Joule heating, ambient pressure, and microstructure(Institute of Electrical and Electronics Engineers, 1998-06) Fardmanesh, M.; Scoles, K.; Rothwarf, A.Joule heating due to the bias current and resistance of the material in patterned YBa2Cu3O7-x superconducting films on 250-500-mu m-thick MgO, LaAlO3, and SrTiO3 crystalline substrates, results in a number of effects: 1) a temperature rise in the film with respect to the measured temperature at the bottom of the substrate; 2) a possible thermal runaway, which may be local or uniformly distributed in the film, depending upon the dimensions of the superconducting pattern relative to that of the substrate; 3) an apparently sharper normal-to-superconducting transition in the measure R versus T curve; and 4) decrease of T-c to 60 K (Delta T-x > 20 K) after being subjected to high-bias currents j similar to 10(5) A/cm(2) under vacuum, with recovery of T-c after exposure to room atmosphere. The magnitude of R at Tc-onset is found to be dependent on bias current in granular samples, with a lower R at currents higher than some on-set value. The slope of R versus T in the transition region in our granular samples is found to be lower at higher bias currents, since the widening of the transition overcomes the shift caused by the Joule heating. These various phenomena impact the responsivity of bolometers made from these films, as well as the predictions of possible attainable responsivity and speculations of mechanisms occurring in the films. In particular, misinterpretation of the Joule heating sharpening of the R versus T curve has led to predictions of responsivities over one order of magnitude higher than are justified, and shifts in properties of the films due to heating have been misinterpreted as nonequilibrium responses of the films.Item Open Access Demonstration of flexible thin film transistors with GaN channels(American Institute of Physics Inc., 2016) Bolat, S.; Sisman, Z.; Okyay, Ali KemalWe report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far. © 2016 Author(s)Item Open Access Digitally alloyed ZnO and TiO2 thin film thermistors by atomic layer deposition for uncooled microbolometer applications(AVS Science and Technology Society, 2017) Tilkioğlu, Bilge T.; Bolat, Sami; Tanrıkulu, Mahmud Yusuf; Okyay, Ali KemalThe authors demonstrate the digital alloying of ZnO and TiO2 via atomic layer deposition method to be utilized as the active material of uncooled microbolometers. Depositions are carried out at 200 °C. Crystallinity of the material is shown to be degraded with the increase of the Ti content in the grown film. A maximum temperature coefficient of resistance (TCR) of −5.96%/K is obtained with the films containing 12.2 at. % Ti, and the obtained TCR value is shown to be temperature insensitive in the 15-22 °C, thereby allowing a wide range of operation temperatures for the low cost microbolometers. © 2017 American Vacuum Society.Item Open Access Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning hall probe microscopy using a bismuth micro-Hall probe(Japan Society of Applied Physics, 2001) Sandhu, A.; Masuda, H.; Oral, A.; Bending, S. J.A bismuth micro-Hall probe sensor with an integrated scanning tunnelling microscope tip was incorporated into a room temperature scanning Hall probe microscope system and successfully used for the direct magnetic imaging of microscopic domains of low coercivity perpendicular garnet thin films and demagnetized strontium ferrite permanent magnets. At a driving current of 800 μA, the Hall coefficient, magnetic field sensitivity and spatial resolution of the Bi probe were 3.3 × 10-4 Ω/G, 0.38 G/√Hz and ∼ 2.8 μm, respectively. The room temperature magnetic field sensitivity of the Bi probe was comparable to that of a semiconducting 1.2μm GaAs/AlGaAs heterostructure micro-Hall probe, which exhibited a value of 0.41 G/√Hz at a maximum driving current of 2μA.Item Open Access Doping of 2-Cl-PANI/PVC films by exposure to UV, γ-rays and e-beams(Elsevier Sequoia SA, Lausanne, Switzerland, 2000) Sevil, U. A.; Güven, O.; Birer, Ö.; Süzer, Ş.2-Chloro-polyaniline (2-Cl-PANI) is chemically prepared in its non-conducting (Emeraldine Base, EB) form and dissolved together with polyvinylchloride (PVC) in THF for casting into thin (10-50 μm) composite films. The electrical conductivity of these films increases by more than four orders of magnitude (from 10-6 to 10-2 S/cm) when they are exposed to UV, γ-rays and e-beams. This is attributed to the dehydrochlorination (loss of HCl) of PVC by exposure to energetic particles and subsequent doping of the 2-Cl-PANI (i.e., conversion to Emeraldine Salt, ES) by the in-situ-created HCl. The doped films can also be returned to their undoped form by further exposure to NH3 vapours. The UV (or other particles)-induced doping/NH3 undoping cycles can be repeated several times until almost total dehydrochlorination of the PVC matrix. UV-Vis-NIR, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopic (XPS) techniques are employed to follow the changes in the composite films upon doping by exposure to these energetic particles.