Browsing by Subject "Photocurrents"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access High-performance 1.55 μm resonant cavity enhanced photodetector(IEEE, 2002) Kimukin, İbrahim; Bıyıklı, Necmi; Özbay, EkmelA high speed and high efficiency resonant cavity enhanced InGaAs based photodetector was demonstrated. A peak quantum efficiency of 66% was measured along with 31 GHz bandwidth with the device. The photoresponse was found to be linear upto 6 mW optical power, where the device 5 mA photocurrent.Item Open Access High-speed 1.55 μm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p-i-n photodiodes(American Institute of Physics, 2004) Butun, B.; Bıyıklı, Necmi; Kimukin, I.; Aytur, O.; Özbay, Ekmel; Postigo, P. A.; Silveira, J. P.; Alija, A. R.The 1.55 μm high-speed operation of GaAs-based p-i-n photodiodes was demonstrated and their design, growth and fabrication were discussed. A resonant-cavity-detector structure was used to selectively enhance the photoresponse at 1.55 μm. The bottom mirror of the resonant cavity was formed by a highly reflecting 15-pair GaAs/AlAs Bragg mirror and molecular-beam epitaxy was used for wafer growth. It was found that the fabricated devices exhibited a resonance of around 1548 nm and an enhancement factor of 7.5 was achieved when compared to the efficiency of a single-pass detector.Item Open Access High-speed InGaAs based resonant cavity enhanced p-i-n photodiodes(IEEE, 2001) Kimukin, İbrahim; Bıyıklı, Necmi; Özbay, EkmelHigh-speed InGaAs based resonant cavity enhanced photodiodes were discussed. The responses of the photodiodes was measured under high incident optical powers. Bandwidth-efficiency (BWE) product was used to measure the performance of the photodiode. Transfer matrix method was used to design the epilayer structure and to simulate the optical properties of the photodiode. Photo response measurements were carried out in 1450 nm to 1700 nm range using a tungsten-halogen projection lamp as the light source and a single pass monochromator. The deconvolved Fourier transform of the data was found to have a bandwidth of 31 GHz under conditions of 40 GHz limit.Item Open Access High-speed widely-tunable >90% quantum-efficiency resonant cavity enhanced p-i-n photodiodes(IEEE, 1998) Bıyıklı, Necmi; Kimukin, İbrahim; Aytür, Orhan; Gökkavas, M.; Ulu, G.; Mirin, R.; Christensen, D. H.; Ünlü, M. S.; Özbay, EkmelWidely-tunable high-speed resonant cavity enhanced p-i-n photodiodes were designed, fabricated and tested for operation around 820 nm. The structure was grown by solid-source MBE on GaAs substrates and features high-reflectivity Bragg mirrors made of quarter-wave Al0.20Ga0.80As/AlAs stacks. Photoresponse and photospectral measurements were carried out. The tuning of the resonance wavelength within the Bragg mirror's upper and lower edges was observed. Quantum efficiency greater than 90% was demonstrated.Item Open Access InGaAs-based high-performance p-i-n photodiodes(IEEE, 2002-03) Kimukin, I.; Bıyıklı, Necmi; Butun, B.; Aytur, O.; Ünlü, S. M.; Özbay, EkmelIn this letter, we have designed, fabricated, and characterized high-speed and high efficiency InGaAs-based p-i-n photodetectors with a resonant cavity enhanced structure. The devices were fabricated by a microwave-compatible process. By using a postprocess recess etch, we tuned the resonance wavelength from 1605 to 1558 nm while keeping the peak efficiencies above 60%. The maximum quantum efficiency was 66% at 1572 nm which was in good agreement with our theoretical calculations. The photodiode had a linear response up to 6-mW optical power, where we obtained 5-mA photocurrent at 3-V reverse bias. The photodetector had a temporal response of 16 ps at 7-V bias. After system response deconvolution, the 3-dB bandwidth of the device was 31 GHz, which corresponds to a bandwidth-efficiency product of 20 GHz.Item Open Access Ultrafast and highly efficient resonant cavity enhanced photodiodes(SPIE, 2003-09) Özbay, Ekmel; Kimukin, İbrahim; Bıyıklı, NecmiIn this talk, we will review our research efforts on resonant cavity enhanced (RCE) high-speed high-efficiency photodiodes (PDs) operating in the 1st and 3rd optical communication windows. Using a microwave compatible planar fabrication process, we have designed and fabricated GaAs and InGaAs based RCE photodiodes. For RCE GaAs Schottky type photodiodes, we have achieved peak quantum efficiencies of 50% and 75% with semi-transparent (Au) and transparent (indium-tin-oxide) Schottky layers respectively. Along with 3-dB bandwidths of 50 and 60 GHz, these devices exhibit bandwidth-efficiency (BWE) products of 25 GHz and 45 GHz respectively. By using a postprocess recess etch, we tuned the resonance wavelength of an RCE InGaAs PD from 1605 to 1558 nm while keeping the peak efficiencies above 60%. The maximum quantum efficiency was 66% at 1572 nm which was in good agreement with our theoretical calculations. The photodiode had a linear response up to 6 mW optical power, where we obtained 5 mA photocurrent at 3 V reverse bias. The photodetector had a temporal response of 16 psec at 7 V bias. After system response deconvolution, the 3-dB bandwidth of the device was 31 GHz, which corresponds to a bandwidth-efficiency product of 20 GHz.