BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Organic acids"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Conducting polymer composites of polypyrrole and a poly(arylene ether ketone)
    (1998) Selampinar F.; Akbulut, U.; Toppare L.
    Electrically conducting composites of polypyrrole and a poly(arylene ether ketone) were synthesized by electroinitiated polymerization of pyrrole on a poly(arylene ether ketone)-coated platinum electrode. The electrolysis medium was water and p-toluene sulfonic acid. The conductivities of the composites were in the range 1-10 S/cm. The composites were characterized by scanning electron microscopy, Fourier transform infrared, and thermal analyses. The composites were found to be composed of bilayers which can be peeled into two free-standing polymer films. The solution side of the polypyrrole layer of the alloy film contains globular structures, whereas the other side is smoother.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents
    (Institute of Physics Publishing, 2010) Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioǧlu H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B.
    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. © 2010 IOP Publishing Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Parametrically coupled multiharmonic force imaging
    (AIP Publishing, 2008) Abak, M. K.; Aktas, O.; Mammadov R.; Gürsel, I.; Dâna, A.
    We report use of nonlinear tip-sample interactions to parametrically convert the frequency components of periodic tip-sample interaction forces to frequencies where they can be resonantly detected. One flexural mode of a cantilever is used for tapping-mode imaging and another flexural mode is used for detection of forces converted in presence of an externally injected mechanical oscillation at the difference frequency of the detecting mode and a harmonic of the tapping mode. Material contrast in attractive and repulsive regimes are demonstrated on samples with polymethyl methacrylate patterns and with deoxyribonucleic acid strands on silicon. © 2008 American Institute of Physics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility
    (Elsevier, 2016-04) Aytac Z.; Kusku, S. I.; Durgun, Engin; Uyar, Tamer
    Electrospinning of polyacrylic acid (PAA) nanofibres (NF) incorporating β-cyclodextrin inclusion complex (β-CD-IC) of quercetin (QU) was performed. Here, β-CD was used as not only the crosslinking agent for PAA nanofibres but also as a host molecule for inclusion of QU. The phase solubility test showed enhanced solubility of QU due to the inclusion complexation; in addition, the stoichiometry of QU/β-CD-IC was determined to be 1:1. Computational modelling studies confirmed that 1:1 and 1:2 complex formation are desirable; 1:1 complex formation was chosen to have higher weight loading of QU. SEM images showed that PAA/QU/β-CD-IC-NF were bead-free and uniform. XRD indicated that PAA/QU/β-CD-IC-NF were amorphous in nature without the crystalline peaks of QU. Comparative results revealed that the release profile of QU from PAA/QU/β-CD-IC-NF was much slower but greater in total than from PAA/QU/β-CD-IC-film. Moreover, high antioxidant activity and photostability of QU was achieved in PAA/QU/β-CD-IC-NF.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Supramolecular GAG-like self-assembled glycopeptide nanofibers Induce chondrogenesis and cartilage regeneration
    (American Chemical Society, 2016) Yaylaci, U. S.; Ekiz, M. S.; Arslan, E.; Can, N.; Kilic, E.; Ozkan, H.; Orujalipoor, I.; Ide, S.; Tekinay, A. B.; Güler, Mustafa O.
    Glycosaminoglycans (GAGs) and glycoproteins are vital components of the extracellular matrix, directing cell proliferation, differentiation, and migration and tissue homeostasis. Here, we demonstrate supramolecular GAG-like glycopeptide nanofibers mimicking bioactive functions of natural hyaluronic acid molecules. Self-assembly of the glycopeptide amphiphile molecules enable organization of glucose residues in close proximity on a nanoscale structure forming a supramolecular GAG-like system. Our in vitro culture results indicated that the glycopeptide nanofibers are recognized through CD44 receptors, and promote chondrogenic differentiation of mesenchymal stem cells. We analyzed the bioactivity of GAG-like glycopeptide nanofibers in chondrogenic differentiation and injury models because hyaluronic acid is a major component of articular cartilage. Capacity of glycopeptide nanofibers on in vivo cartilage regeneration was demonstrated in microfracture treated osteochondral defect healing. The glycopeptide nanofibers act as a cell-instructive synthetic counterpart of hyaluronic acid, and they can be used in stem cell-based cartilage regeneration therapies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy
    (2009) Ozlem, S.; Akkaya, E. U.
    A simple derivative of a well-known dye bodipy appears to be a satisfactory sensitizer for singlet oxygen. Moreover, the rate of singlet oxygen generation can be modulated by two cancer-related cellular parameters, sodium ion concentration and acidity. Singlet oxygen generation rate is maximal when sodium ions and an organic acid were added. The operation of this molecular automaton follows AND logic, which introduces an additional layer of selectivity in the photodynamic action of the reagent. It should also be noted that in this system sensing, computing and actuating functions are realized within a single molecule. Copyright © 2008 American Chemical Society.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback