Browsing by Subject "Optical sensors"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item Open Access Coupled plasmonic structures for sensing, energy and spectroscopy applications(2015-08) Ayas, SencerRecent advances in nanofabrication and characterization methods have enabled the study of novel optical phenomena, thus boosting the research in nanophotonics and plasmonics. Metal nanostructures offer a route for the excitation of surface plasmons by confining the light in sub-wavelength dimensions, yielding extremely high electromagnetic field intensities. Moreover, coupling different plasmon modes offers a rich optical dispersion which cannot be obtained inherently by using single plasmonic resonator. In this thesis, we first present a detailed study of simple coupled plasmonic structures based on metal-insulator-metal structure. Then, we use similar structures to devise novel optical platforms in various applications such as surface enhanced Raman spectroscopy (SERS), surface enhanced infrared absorption spectroscopy (SEIRA) and plasmon enhanced hot-electron devices. The first part of this thesis concentrates on coupled plasmonic structures and their spectroscopy and photodetector applications. Firstly, we study these structures numerically and analytically and show surface enhanced Raman spectroscopy (SERS) as a possible application with uniform signal intensities over large areas. Then, fabricating these plasmonic surfaces with sub-10nm gaps over large areas lead to development of single molecule Raman spectroscopy platforms. As an energy related application, a contact free characterization method is developed to probe hot electrons where similar coupled plasmonic surfaces are employed as hot electron devices. Finally, using aluminum and its native aluminum oxide hierarchical plasmonic surfaces are fabricated and its spectroscopy applications are demonstrated. In the second part of, we develop interference-coating-based sensing platforms in the visible and infrared wavelengths. Despite large field enhancements, plasmonic structures suffer from low signal intensities due to low mode volumes. To overcome this issue we propose another strategy, namely using interference coatings with small and uniform electric field enhancements over large mode volumes. These surfaces outperform the conventional plasmonic surfaces when they are used as infrared absorption spectroscopy platforms. Finally, similar surfaces are employed as colorimetric sensor platforms to sense monolayer and bilayer proteins simply by change in the surface color.Item Open Access Differentiation and localization of targets using infrared sensors(Elsevier, 2002) Aytaç, T.; Barshan, B.This study investigates the use of low-cost infrared emitters and detectors in the differentiation and localization of commonly encountered features or targets in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings obtained with such systems are highly dependent on target location and properties in a way which cannot be represented in a simple manner, making the differentiation and localization process difficult. In this paper, we propose the use of angular intensity scans and present an algorithm to process them. This approach can determine the target type independent of its position. Once the target type is identified, its position can also be estimated. The method is verified experimentally. An average correct classification rate of 97% over all target types is achieved and targets are localized within absolute range and azimuth errors of 0.8 cm and 1.6°, respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than that which they are commonly employed for.Item Open Access A direct detection fiber optic distributed acoustic sensor with a mean SNR of 7.3 dB at 102.7 km(Institute of Electrical and Electronics Engineers Inc., 2019) Uyar, Faruk; Onat, Talha; Ünal, Canberk; Kartaloğlu, Tolga; Özbay, Ekmel; Özdür, İ.In this work, we present the experimental results of a direct detection π-OTDR based distributed acoustic sensor system. The system uses two cascaded acousto-optic modulators in order to generate optical pulses with very high extinction ratio and dual photodetector scheme for high dynamic range. The proposed schemes are investigated in detail and their performance enhancement is experimentally verified. Four piezoelectric based fiber stretchers are placed on a ~104 km single-mode test fiber at the distances of 1 km, 10 km, 87 km and 102.7 km and used for perturbation tests. The stretchers generated vibration signals which are analyzed to quantify the system performance. The signal-to-noise ratio (SNR) of vibration signals at the monitored distances is measured over the 12-hour recorded data within 34-second time windows considering the multi-point random interference of scattered light and fading phenomena. Using the 12-hour data, SNR histograms at four different locations are generated and mean SNR values are obtained. The signals received from 102.7 km has a maximum SNR of 24.7 dB and a mean SNR of 7.3 dB with a spatial resolution of 15 m. To the best of our knowledge, this is the highest-range reported direct detection π-OTDR based distributed acoustic sensor system.Item Open Access High resolution dielectric characterization of single cells and microparticles using integrated microfluidic microwave sensors(Institute of Electrical and Electronics Engineers, 2023-03-01) Seçme, Arda; Tefek, Uzay; Sarı, Burak; Pisheh, Hadi Sedaghat; Uslu, H. Dilara; Akbulut, Özge; Küçükoğlu, Berk; Erdoğan, R. Tufan; Alhmoud, Hashim; Şahin, Özgür; Hanay, M. SelimMicrowave sensors can probe intrinsic material properties of analytes in a microfluidic channel at physiologically relevant ion concentrations. While microwave sensors have been used to detect single cells and microparticles in earlier studies, the synergistic use and comparative analysis of microwave sensors with optical microscopy for material classification and size tracking applications have been scarcely investigated so far. Here we combined microwave and optical sensing to differentiate microscale objects based on their dielectric properties. We designed and fabricated two types of planar sensor: a Coplanar Waveguide Resonator (CPW) and a Split-Ring Resonator (SRR). Both sensors possessed sensing electrodes with a narrow gap to detect single cells passing through a microfluidic channel integrated on the same chip. We also show that standalone microwave sensors can track the relative changes in cellular size in real-time. In sensing single 20-micron diameter polystyrene particles, Signal-to-Noise ratio values of approximately 100 for CPW and 70 for SRR sensors were obtained. These findings demonstrate that microwave sensing technology can serve as a complementary technique for single-cell biophysical experiments and microscale pollutant screening.Item Open Access High‐speed atomic force microscopy using an integrated actuator and optical lever detection(A I P Publishing LLC, 1996-09) Manalis, S. R.; Minne, S. C.; Atalar, Abdullah; Quate, C. F.A new procedure for high‐speed imaging with the atomic force microscope that combines an integrated ZnO piezoelectric actuator with an optical lever sensor has yielded an imaging bandwidth of 33 kHz. This bandwidth is primarily limited by a mechanical resonance of 77 kHz when the cantilever is placed in contact with a surface. Images scanned with a tip velocity of 1 cm/s have been obtained in the constant force mode by using the optical lever to measure the cantilever stress. This is accomplished by subtracting an unwanted deflection produced by the actuator from the net deflection measured by the photodiode using a linear correction circuit. We have verified that the tip/sample force is constant by monitoring the cantilever stress with an implanted piezoresistor.Item Open Access Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues(2011) Cihan, C.; Arifler, D.Metal nanoparticles can be functionalized with biomolecules to selectively localize in precancerous tissues and can act as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo (MC) simulations to analyze photon propagation through nanoparticle-labeled tissues and to reveal the importance of using a proper form of phase function for modeling purposes. We first employ modified phase functions generated with a weighting scheme that accounts for the relative scattering strengths of unlabeled tissue and nanoparticles. To present a comparative analysis, we repeat ourMCsimulations with simplified functions that only approximate the angular scattering properties of labeled tissues. The results obtained for common optical sensor geometries and biologically relevant labeling schemes indicate that the exact form of the phase function used as model input plays an important role in determining the reflectance response and approximating functions often prove inadequate in predicting the extent of contrast enhancement due to labeling. Detected reflectance intensities computed with different phase functions can differ up to ̃60% and such a significant deviation may even alter the perceived contrast profile. These results need to be taken into account when developing photon propagation models to assess the diagnostic potential of nanoparticle-enhanced optical measurements. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access A microfluidic based differential plasmon resonance sensor(Elsevier, 2011) Okan, M.; Balci, O.; Kocabas, C.A new type of differential surface plasmon (SPR) sensor integrated with a microfluidic system is presented. The working principle of the microfluidic device is based on hydrodynamic modulation of two laminar streams inside a microchannel to provide periodic changes of the environment on the SPR sensor. The modulated reflectance is then demodulated using a lock-in amplifier. The presented sensor provides sensitivities of index of refraction about 4 × 10-8 RIU together with a 4 orders of magnitude dynamic range. This method demonstrates a sensitive detection scheme which could be used for label-free detection. © 2011 Elsevier B.V. All rights reserved.Item Open Access Micromachined III-V cantilevers for AFM-tracking scanning Hall probe microscopy(Institute of Physics, 2003) Brook, A. J.; Bending, S. J.; Pinto, J.; Oral, A.; Ritchie, D.; Beere, H.; Springthorpe, A.; Henini, M.In this paper we report the development of a new III-V cantilever-based atomic force sensor with piezoresistive detection and an integrated Hall probe for scanning Hall probe microscopy. We give detailed descriptions of the fabrication process and characterization of the new integrated sensor, which will allow the investigation of magnetic samples with no sample preparation at both room and cryogenic temperatures. We also introduce a novel piezoresistive material based on the ternary alloy n+-Al0.4Ga0.6As which allows us to achieve a cantilever deflection sensitivity ΔR/(RΔz) = 2 × 10-6 Å-1 at room temperature.Item Open Access Novel integrated optical displacement sensor for scanning force microscopies(IEEE, 2003) Aydınlı, Atilla; Kıyat, İsa; Kocabaş, CoşkunA novel displacement sensor for scanning force microscoples using an integrated optical micro-ring resonator is described. Device operates by monitoring the changes in transmission spectrum of micro-ring resonator. This design provides sensitivities about ∼10-4 Å-1.Item Open Access Object detection using optical and LiDAR data fusion(IEEE, 2016-07) Taşar, Onur; Aksoy, SelimFusion of aerial optical and LiDAR data has been a popular problem in remote sensing as they carry complementary information for object detection. We describe a stratified method that involves separately thresholding the normalized digital surface model derived from LiDAR data and the normalized difference vegetation index derived from spectral bands to obtain candidate image parts that contain different object classes, and incorporates spectral and height data with spatial information in a graph cut framework to segment the rest of the image where such separation is not possible. Experiments using a benchmark data set show that the performance of the proposed method that uses small amount of supervision is compatible with the ones in the literature. © 2016 IEEE.Item Open Access An optical microcantilever with integrated grating coupler(IEEE, 2009-06) Olcum, Selim; Karademir, Ertuğrul; Taş. Vahdettin; Akça, İmran; Kocabaş, Aşkın; Atalar, Abdullah; Aydınlı, AydınlıIn this paper, we have fabricated an optical cantilever with an integrated grating coupler. We have used an inexpensive and repeatable method for integrating the grating to the silicon cantilever with a microfabrication compatible process. The sensitivity of the method can be further increased by integrating the detection circuitry onto the cantilever substrate. We believe that this is a promising method for sensing applications which provide a simple yet sensitive measurement technique using microcantilevers.Item Open Access Position-invariant surface recognition and localization using infrared sensors(SPIE, 2003) Barshan, B.; Aytaç, T.Low-cost infrared emitters and detectors are used for the recognition of surfaces with different properties in a location-invariant manner. The intensity readings obtained with such devices are highly dependent on the location and properties of the surface in a way that cannot be represented in a simple manner, complicating the recognition and localization process. We propose the use of angular intensity scans and present an algorithm to process them. This approach can distinguish different surfaces independently of their positions. Once the surface is identified, its position can also be estimated. The method is verified experimentally with the surfaces aluminum, white painted wall, brown kraft paper, and polystyrene foam packaging material. A correct differentiation rate of 87% is achieved, and the surfaces are localized within absolute range and azimuth errors of 1.2 cm and 1.0 deg, respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for. © 2003 Society of Photo-Optical Instrumentation Engineers.Item Open Access Pressure sensing using micromachined asymmetric integrated vertical coupler(IEEE, 2003) Kıyat, İsa; Kocabaş, Coşkun; Aydınlı, AtillaAnalysis of a novel pressure sensor based on a SOI asymmetric vertical coupler is presented. The integrated optical component is a coupler composed of a single mode low index waveguide and a thin silicon slab.Item Open Access Simultaneous extraction of geometry and surface properties of targets using infrared intensity signals(IEEE, 2005) Aytaç, Tayfun; Barshan, BillurWe propose the use of angular intensity signals obtained with low-cost infrared sensors and present an algorithm to simultaneously extract the geometry and surface properties of commonly encountered targets in indoor environments. The method is verified experimentally with planes, 90° corners, and 90° edges covered with aluminum, white cloth, and Styrofoam packaging material. An average correct classification rate of 80% of both geometry and surface over all target types is achieved and targets are localized within absolute range and azimuth errors of 1.5 cm and 1.1°, respectively. Taken separately, the geometry and surface type of targets can be correctly classified with rates of 99% and 81%, respectively, indicating that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor. The method demonstrated shows that simple infrared sensors, when coupled with appropriate signal processing, can be used to extract substantially more information than such devices are commonly employed for.Item Open Access Simultaneous extraction of geometry and surface properties of targets using simple infrared sensors(SPIE, 2004) Aytaç, T.; Barshan, B.We investigate the use of low-cost infrared (IR) sensors for the simultaneous extraction of geometry and surface properties of commonly encountered features or targets in indoor environments, such as planes, corners, and edges. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting target in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and recognition process. We propose the use of angular intensity scans and present an algorithm to process them to determine the geometry and the surface type of the target and estimate its position. The method is verified experimentally with planes, 90-deg corners, and 90-deg edges covered with aluminum, white cloth, and Styrofoam packaging material. An average correct classification rate of 80% of both geometry and surface over all target types is achieved and targets are localized within absolute range and azimuth errors of 1.5 cm and 1.1 deg, respectively. Taken separately, the geometry and surface type of targets can be correctly classified with rates of 99 and 81%, respectively, which shows that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor. The method demonstrated shows that simple IR sensors, when coupled with appropriate processing, can be used to extract substantially more information than that for which such devices are commonly employed. © 2004 Society of Photo-Optical Instrumentation Engineers.Item Open Access Warm white light generating nanocrystal hybridized LEDs with high color rendering index(IEEE, 2008-11) Demir, Hilmi Volkan; Nizamoğlu, Sedat; Zengin, GülişBy hybridizing custom-design CdSe/ZnS core-shell NC emitters on InGaN/GaN based blue LEDs, we demonstrated three warm-white light sources with desirably low CCT ranging from 3227 K to 1982 K as is required for SSL indoor applications. In these proof-of-concept demonstrations, high color rendering indices (82.4) and high luminous efficacies of emitted spectra (327 lm/W) were achieved, while the color temperature was simultaneously kept low as desired. Our proof-of-concept demonstrations indicated that such nanocrystal luminophor based warm-white LEDs with high-quality photometric properties hold great promise especially for future indoor lighting applications.