Position-invariant surface recognition and localization using infrared sensors

Date
2003
Authors
Barshan, B.
Aytaç, T.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Optical Engineering
Print ISSN
0091-3286
Electronic ISSN
Publisher
SPIE
Volume
42
Issue
12
Pages
3589 - 3594
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Low-cost infrared emitters and detectors are used for the recognition of surfaces with different properties in a location-invariant manner. The intensity readings obtained with such devices are highly dependent on the location and properties of the surface in a way that cannot be represented in a simple manner, complicating the recognition and localization process. We propose the use of angular intensity scans and present an algorithm to process them. This approach can distinguish different surfaces independently of their positions. Once the surface is identified, its position can also be estimated. The method is verified experimentally with the surfaces aluminum, white painted wall, brown kraft paper, and polystyrene foam packaging material. A correct differentiation rate of 87% is achieved, and the surfaces are localized within absolute range and azimuth errors of 1.2 cm and 1.0 deg, respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for. © 2003 Society of Photo-Optical Instrumentation Engineers.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)