Browsing by Subject "Nanofibers"
Now showing 1 - 20 of 122
- Results Per Page
- Sort Options
Item Open Access Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water(Elsevier, 2018) Satılmış, Berk; Işık, T.; Demir, M. M.; Uyar, TamerThe Polymers of Intrinsic Microporosity (PIM-1) is considered as one of the most promising polymer candidates for adsorption applications owing to its high surface area and the ability to tailor the functionality for the targeted species. This study reports a facile method for the preparation of amidoxime functionalized PIM-1 fibrous membrane (AF-PIM-FM) by electrospinning technique and its practical use for the extraction of U(VI) ions from aqueous systems via column sorption under continuous flow. Fibrous membrane form of amidoxime functionalized PIM-1 (AF-PIM-FM) was prepared by electrospinning method owing to its excellent processability in dimethylformamide. Bead-free and uniform fibers were obtained as confirmed by SEM imaging and average fiber diameter was 1.69 ± 0.34 μm for AF-PIM-FM. In addition, electrospun PIM-1 fibrous membrane (PIM-FM) was prepared as a control group. Structural and thermal characterization of powder and membrane forms of the materials were performed using FT-IR, 1 H NMR, XPS, Elemental analyses, TGA, and DSC. The porosity of the samples was measured by N2 sorption isotherms confirming amidoxime PIM-1 still maintain their porosity after functionalization. Amidoxime functionality along with membrane structure makes AF-PIM-FM a promising material for uranyl adsorption. First, a comparison between powder and membrane form of amidoxime functionalized PIM-1 was investigated using batch adsorption process. Although membrane form has shown slightly lower adsorption performance in the batch adsorption process, the advantage of using the membrane in column adsorption processes makes membrane form more feasible for real applications. In addition, amidoxime modification enhanced the uranium adsorption ability of PIM-FM up to 20 times. The effect of initial concentration and pH were investigated along with regeneration of the adsorbents. AF-PIM-FM was successfully used for five adsorption-desorption cycles without having any damage on the fibrous structure.Item Open Access Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system(Elsevier, 2018) Satılmış, B.; Uyar, TamerPolymers of Intrinsic Microporosity (PIM-1) is a promising material for adsorption and separation applications. While PIM-1 displays high affinity for neutral species, it shows lack of interaction with charged molecules in an aqueous system due to non-polar nature of it. Functionalization of PIM-1 provides an advantage of tailoring the interaction ability as well as the adsorption performance of PIM-1 towards target pollutants. In this study, electrospun Polymer of Intrinsic Microporosity (PIM-1) fibrous membrane (PIM-FM) was reacted with borane dimethyl sulfide complex to obtain amine modified PIM-1 fibrous membrane (AM-PIM-FM). Furthermore, PIM-1 film, which is referred as PIM-1 dense membrane (PIM-DM), was also modified under the same conditions as a control material. Structural analyses have confirmed that nitrile groups of PIM-1 have been fully converted to amine group as a result of the reduction reaction. Average fiber diameter of parent PIM-1 fibers was found 2.3 ± 0.3 μm, and it remained almost the same after the amine modification. In addition, no physical damage has been observed on fiber structure based on the SEM analysis. Both amine modified PIM-1 dense and fibrous membranes became insoluble in common organic solvents. Before the modification, water contact angle of PIM-FM was 138 ± 2° which also remained almost the same after the modification, showing water contact angle of 131 ± 8°. The insolubility along with amine functionality make membranes promising materials for adsorption of anionic dyes from wastewater. Here, dye (i.e. Methyl Orange) removal ability of AM-PIM-FM from an aqueous system was investigated and compared with parent PIM-1 (PIM-FM) as well as dense membrane form (AM-PIM-DM). AM-PIM-FM shows extremely higher adsorption capacity than that of PIM-FM and AM-PIM-DM. The maximum adsorption capacity of AM-PIM-FM was found 312.5 mg g−1 for Methyl Orange. Langmuir isotherm model was found more favorable for the adsorption. AM-PIM-FM was employed effectively in continuous adsorption/desorption studies for several times without having any damage on fiber morphology using batch adsorption process. Furthermore, AM-PIM-FM was successfully used as a molecular filter for the removal of methyl orange from an aqueous system. The results indicate that AM-PIM-FM could be a promising adsorbent for removal of anionic molecules from an aqueous system.Item Open Access Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials(Royal Society of Chemistry, 2013) Acar, H.; Garifullin, R.; Aygun, L. E.; Okyay, Ali Kemal; Güler, Mustafa O.One-dimensional titania nanostructures can serve as a support for light absorbing molecules and result in an improvement in the short circuit current (Jsc) and open circuit voltage (Voc) as a nanostructured and high-surface-area material in dye-sensitized solar cells. Here, self-assembled amyloid-like peptide nanofibers were exploited as an organic template for the growth of one-dimensional titania nanostructures. Nanostructured titania layers were utilized as anodic materials in dye sensitized solar cells (DSSCs). The photovoltaic performance of the DSSC devices was assessed and an enhancement in the overall cell performance compared to unstructured titania was observed.Item Open Access Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction(Acta Materialia Inc, 2017) Rufaihah, A. J.; Yasa, I. C.; Ramanujam, V. S.; Arularasu, S. C.; Kofidis, T.; Güler, Mustafa O.; Tekinay, A. B.Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.Item Open Access Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes(Elsevier, 2014) Celebioglu A.; Umu, O. C. O.; Tekinay, T.; Uyar, TamerThe electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520±250nm and 1100±660nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by 1H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1molar ratio of the triclosan:CD was kept for triclosan/HPβCD-IC NF after the electrospinning and whereas 0.7:1molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPβCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.Item Open Access Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes(2013) Kayaci F.; Umu O.C.O.; Tekinay, T.; Uyar, T.Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by 1H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property. © 2013 American Chemical Society.Item Open Access Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging(Elsevier, 2017-10) Aytac Z.; Ipek, S.; Durgun, Engin; Tekinay, T.; Uyar, TamerThymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.Item Open Access Antigenic GM3 lactone mimetic molecule integrated mannosylated glycopeptide nanofibers for the activation and maturation of dendritic cells(American Chemical Society, 2017) Gunay, Gokhan; Ekiz, Melis Sardan; Ferhati, X.; Richichi, B.; Nativi, C.; Tekinay, Ayse B.; Güler, Mustafa O.The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery. © 2017 American Chemical Society.Item Unknown Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: enhanced water solubility, prolonged shelf life, and photostability of vitamin E(American Chemical Society, 2017) Çelebioğlu, Aslı; Uyar, TamerHere, we demonstrated the electrospinning of polymer-free nanofibrous webs from inclusion complex (IC) between hydroxypropyl-β-cyclodextrin (HPβCD) and Vitamin E (Vitamin E/HPβCD-IC NF). The inclusion complexation between HPβCD and Vitamin E was prepared by using two different molar ratios (Vitamin E/HPβCD; 1:2 and 1:1), which correspond to theoretical value of ∼13% (w/w) and 26% (w/w) loading of Vitamin E in the nanofiber (NF) matrix. After electrospinning and storage, a very high loading of Vitamin E (up to ∼11% w/w, with respect to fiber matrix) was preserved in Vitamin E/HPβCD-IC NF. Because of the cyclodextrin inclusion complexation, only a minimal weight loss (only ∼2% w/w) was observed. While pure Vitamin E is insoluble in water, Vitamin E/HPβCD-IC NF web has displayed fast-dissolving behavior. Because of the greatly enhanced water-solubility of Vitamin E, Vitamin E/HPβCD-IC NF web has shown effective antioxidant activity. Additionally, Vitamin E/HPβCD-IC NF web has provided enhanced photostability for the sensitive Vitamin E by the inclusion complexation in which Vitamin E/HPβCD-IC NF still kept its antioxidant activity even after exposure to UV-light. Moreover, a 3 year-old Vitamin E/HPβCD-IC NF sample has shown very similar antioxidant efficiency when compared with freshly prepared Vitamin E/HPβCD-IC NF indicating that long-term stability was achieved for Vitamin E in the CD-IC fiber matrix. In brief, our results suggested that polymer-free electrospun Vitamin E/HPβCD-IC nanofibrous webs could have potential applications in food, pharmaceuticals, and healthcare thanks to its efficient antioxidant activity along with enhanced water-solubility, prolonged shelf life, and high photostability of Vitamin E.Item Unknown Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging(John Wiley and Sons Inc., 2017-01) Aytac, Z.; Keskin, N. O. S.; Tekinay, T.; Uyar, Tamerα-Tocopherol (α-TC) and α-TC/cyclodextrin (CD)–inclusion complex (IC) incorporated electrospun poly(lactic acid) (PLA) nanofibers (NF) were developed via electrospinning (PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF). The release of α-TC into 95% ethanol (fatty food simulant) was much greater from PLA/α-TC/γ-CD–IC–NF than from PLA/α-TC–NF because of the solubility increase in α-TC; this was confirmed by a phase-solubility diagram. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging assay shows that PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF had 97% antioxidant activities; this value was expected to be high enough to inhibit lipid oxidation. PLA/α-TC–NF and PLA/α-TC/γ-CD–IC–NF were tested directly on beef with the thiobarbituric acid reactive substance (TBARS) method, and the nanofibers displayed a lower TBARS content than the unpackaged meat sample. Thus, active packaging significantly enhanced the oxidative stability of the meat samples at 4 °C. In conclusion, PLA/α-TC/γ-CD–IC–NF was shown to be promising as an active food-packaging material for prolonging the shelf life of foods.Item Unknown Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water(Elsevier, 2017-04) Sarioglu O.F.; Keskin, N. O. S.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials that were produced by encapsulation of bacterial cells within electrospun nanofibrous webs are described. A commercial strain of Pseudomonas aeruginosa which has methylene blue (MB) dye remediation capability was selected for encapsulation, and polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were selected as the polymer matrices for the electrospinning of bacteria encapsulated nanofibrous webs. Encapsulation of bacterial cells was monitored by scanning electron microscopy (SEM) and fluorescence microscopy, and the viability of encapsulated bacteria was checked by live/dead staining and viable cell counting assay. Both bacteria/PVA and bacteria/PEO webs have shown a great potential for remediation of MB, yet bacteria/PEO web has shown higher removal performances than bacteria/PVA web, which was probably due to the differences in the initial viable bacterial cells for those two samples. The bacteria encapsulated electrospun nanofibrous webs were stored at 4 °C for three months and they were found as potentially storable for keeping encapsulated bacterial cells alive. Overall, the results suggest that electrospun nanofibrous webs are suitable platforms for preservation of living bacterial cells and they can be used directly as a starting inoculum for bioremediation of water systems.Item Unknown Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water(Elsevier, 2017-10) Sarioglu O.F.; S. Keskin, N. O.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems.Item Unknown Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth(Royal Society of Chemistry, 2017) Hamsici, S.; Cinar, G.; Celebioglu A.; Uyar, Tamer; Tekinay, A. B.; Güler, Mustafa O.Guidance of neurite extension and establishment of neural connectivity hold great importance for neural tissue regeneration and neural conduit implants. Although bioactive-epitope functionalized synthetic or natural polymeric materials have been proposed for the induction of neural regeneration, chemical modifications of these materials for neural differentiation still remain a challenge due to the harsh conditions of chemical reactions, along with non-homogeneous surface modifications. In this study, a facile noncovalent functionalization method is proposed by exploiting host-guest interactions between an adamantane-conjugated laminin derived bioactive IKVAV epitope and electrospun cyclodextrin nanofibers (CDNFs) to fabricate implantable scaffolds for peripheral nerve regeneration. While electrospun CDNFs introduce a three-dimensional biocompatible microenvironment to promote cellular viability and adhesion, the bioactive epitopes presented on the surface of electrospun CDNFs guide the cellular differentiation of PC-12 cells. In addition to materials synthesis and smart functionalization, physical alignment of the electrospun nanofibers guides the cells for enhanced differentiation. Cells cultured on aligned and IKVAV functionalized electrospun CDNFs had significantly higher expression of neuron-specific βIII-tubulin and synaptophysin. The neurite extension is also higher on the bioactive aligned scaffolds compared to random and non-functionalized electrospun CDNFs. Both chemical and physical cues were utilized for an effective neuronal differentiation process. © The Royal Society of Chemistry.Item Unknown Bioactive supramolecular peptide nanofibers for regenerative medicine(Wiley, 2014) Arslan, Elif; Garip, I. Ceren; Gulseren, Gulcihan; Tekinay, Ayse B.; Güler, Mustafa O.Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation.Item Unknown Biocatalytic protein membranes fabricated by electrospinning(Elsevier B.V., 2016) Kabay, G.; Kaleli, G.; Sultanova, Z.; Ölmez, T. T.; Şeker, U. Ö. Ş.; Mutlu, M.In this study, a protein-based catalytic membrane was produced by electrospinning. Membrane activity was characterised in terms of response current for various glucose concentrations. We focused on the preparation of a scaffold by converting a globular protein to other structural forms using catastrophic solvents. A scaffolding protein, bovine serum albumin, and an enzyme, glucose oxidase (GOD), were selected as a model natural carrier matrix and a biologically active agent, respectively. Beta-mercaptoethanol (β-ME) was used to convert the globular protein to an amyloid-like form. A structural stabilising agent, 2,2,2-triflouroethanol (TFE), was used to maintain the final α-helical structure of the amyloid-like protein. The TFE:PBS (phosphate-buffered saline) ratio and various electrospinning parameters were analysed to minimise activity loss. Using this approach, we applied electrospinning to an active enzyme to obtain biocatalytic nanofibrous membranes. After optimising the protein electrospinning process, the activities of the protein nanofibrous membranes were monitored. GOD remained active in the new membrane structure. The highest enzyme activity was observed for the membranes prepared with a 1.5:1 (v:v) TFE:PBS solvent ratio. In that particular case, the immobilized enzyme created a current of 0.7 μA and the apparent activity was 2547 ± 132 U/m2.Item Unknown Catechin encapsulated antioxidant electrospun nanofibers: A comparative study between cyclodextrin complex nanofibers and poly(vinyl alcohol) nanofibers(American Chemical Society, 2023-05-31) Yıldız, Zehra İrem; Topuz, Fuat; Uyar, TamerCatechin is a plant polyphenol with a strong antioxidant effect. However, its use is limited due to its poor water solubility and sensitivity to light and oxygen. Here, catechin could be solubilized by inclusion complexation with cyclodextrin (CD) (CD-IC), and their solutions were electrospun into fibers in the presence and absence of poly(vinyl alcohol) (PVA) to compare the stabilization of catechin for its antioxidant activity. The antioxidant activity of catechin/CD IC nanofibers was also compared to that of the powder form. Scanning electron microscopy (SEM) analysis revealed the production of bead-free nanofibers. The successful incorporation of catechin into nanofibers was confirmed by Fourier-transform infrared spectroscopy (FTIR) analysis of catechin CC bond stretching. Likewise, 1H NMR spectroscopic analysis revealed the characteristic aromatic protons of catechin. The formation of inclusion complexes was confirmed by X-ray diffraction (XRD) and dissolution testing by the disappearance of crystalline peaks and rapid fiber dissolution, respectively. Finally, antioxidant testing demonstrated the higher antioxidant activity of polymer-free CD-IC nanofibers.Item Unknown Cellular internalization of therapeutic oligonucleotides by peptide amphiphile nanofibers and nanospheres(American Chemical Society, 2016-04) Mumcuoglu, D.; S. Ekiz, M.; Gunay, G.; Tekinay, T.; Tekinay, A. B.; Güler, Mustafa O.Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.Item Unknown Controlled enzymatic stability and release characteristics of supramolecular chiral peptide amphiphile nanofiber gels(Elsevier B.V., 2017) Zengin, A.; Cinar, G.; Güler, Mustafa O.Supramolecular bioarchitectures formed by assembly of achiral or chiral building blocks play important roles in various biochemical processes. Stereochemistry of amino acids is important for structural organization of peptide and protein assemblies and structure-microenvironment interactions. In this study, oppositely charged peptide amphiphile (PA) molecules with L-, D- and mixture of L- and D-amino acid conformations are coassembled into supramolecular nanofibers and formed self-supporting gels at pH 7.4 in water. The enzymatic stability of the PA nanofiber gels was studied in the presence of proteinase K enzyme, which digest a broad spectrum of proteins and peptides. The structural changes on the chiral PA nanofibers were also analyzed at different time periods in the presence of enzymatic activity. Controlled release of a model cargo molecule through the chiral PA nanofiber gels was monitored. The diffusivity parameters were measured for all gel systems. Release characteristics and the enzymatic stability of the peptide nanofiber gels were modulated depending on organization of the chiral PA molecules within the supramolecular assemblies.Item Unknown Cross-linked main-chain polybenzoxazine nanofibers by photo and thermal curing; stable at high temperatures and harsh acidic conditions(Elsevier, 2016-02) Ertaş, Yelda; Uyar, TamerIn this study, for the first time cross-linking of linear aliphatic diamine-based main-chain polybenzoxazine (MCPBz) electrospun nanofibers were accomplished by two-step approach consisting of photo and thermal curing. Initially, two novel MCPBz resins which comprise of a benzophenone unit in the polymer main-chain were synthesized and uniform MCPBz nanofibers were produced by electrospinning. At first step, photo curing was performed by free radical polymerization initiated by UV-light and thermal stability of nanofibers was enhanced. At second step, thermal curing was carried out at different temperatures (150-225 °C) and ring opening and cross-linking of benzoxazine groups in the fiber structure were achieved. After two-step curing, cross-linked MCPBz nanofibers were obtained as free-standing material with good mechanical properties. Moreover, it was shown that these two cross-linked MCPBz nanofibers were structurally stable and maintained their fibrous morphology at high temperatures (400 °C), in good solvents (chloroform, DMF, 1,4-dioxane, DMAc, THF) and highly concentrated strong acids (HCl, HNO3, H2SO4).Item Unknown Cyclodextrin functionalized nanofibers via electrospinning(2014) Çelebioğlu, AslıElectrospinning is a commonly studied and widely applied technique for generating nanofibers, with a diameter ranging from several tens of nanometers to a few micrometers. The low-cost, simple set-up, relatively high production rate and reproducibility increase the interests on this method in both academia and industry. Electrospun nanofibers are produced from a broad range of materials with extremely high surface area, very light-weight, nano-porous features and distinct physical/mechanical properties. The general talk in this technique focuses on the production of nanofibers from polymer base materials. However, very recent studies demonstrated that, it is also possible to obtain nanofibers from non-polymeric systems. For this novel development in electrospinning researches, we have achieved to generate nanofibers from cyclodextrins (CD) without using a polymeric template. CD are cyclic oligosaccharides consisting of α-(1,4)-linked glucopyranose units. The truncated cone shape structure of CD provides a favorable place for various kinds of organic molecules to form non-covalent host-guest inclusion complexes (IC). The enhancements and progressing at the guest molecules property and situation, creating with the inclusion complexation, make CD applicable in variety of areas including filtration, pharmaceuticals, cosmetics, functional foods, textiles, analytic chemistry etc. In this thesis, we report on the electrospinning of CD nanofibers, represent their functionalization and potential applications. Firstly, we produced CD nanofibers from three different chemically modified CD types (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)). Afterwards, the electrospinning of native CD (α-CD, β-CD and γ-CD) nanofibers was achieved. The molecular entrapment capability of CD nanofibers was shown by capturing toxic volatile organic compounds (VOCs) from the surrounding. As the next step, the polymer-free nanofibers were obtained from the cyclodextrin inclusion complexes (CD-IC) with antibacterial agent, vanillin and essential oils. Here, we have also indicated applicability of CD-IC nanofibers as a result of antibacterial test. The functionalization of the CD nanofibers was continued with the green and one-step synthesis of metal nanoparticles (Ag-NP, Au-NP and Pd-NP) incorporated nanofibers, in which CD were used as reducing, stabilizing agent and fiber template. Even, the antibacterial, SERS and catalyst potential of these CD based nanofibers were demonstrated for the related nanoparticles. Our research is expanded to a new stage by the production of insoluble poly-CD nanofibers. We have worked on different crosslinking agents to attain insoluble poly-CD nanofibers with uniform morphology. After the optimization of poly-CD nanofibers, the most durable polyCD nanowebs were selected for further analysis and evaluation of the filtration performance in liquid environment. Within poly-CD nanofibers, we have eliminated the solubility challenge of CD nanofibers that restrict their usage. So, we assume that, poly-CD nanofibers will lead-up to generation of new advances for practices of CD nanofibers. All studies showed that, the self-assembly and self-aggregation property of CD are the prior requirements for the electrospinnability of these small molecules. To conclude, very intriguing materials were obtained by integrating large surface area of nanofibers with specific host-guest inclusion complexation capability and non-toxic, biocompatible nature of the CD. Moreover, CD molecules, which are generally used in the powder form, were rendered into more applicable nanofibers form that will represent ease during their usage.