Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Applied Surface Science

Print ISSN

0169-4332

Electronic ISSN

Publisher

Elsevier

Volume

467-468

Issue

Pages

648 - 657

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The Polymers of Intrinsic Microporosity (PIM-1) is considered as one of the most promising polymer candidates for adsorption applications owing to its high surface area and the ability to tailor the functionality for the targeted species. This study reports a facile method for the preparation of amidoxime functionalized PIM-1 fibrous membrane (AF-PIM-FM) by electrospinning technique and its practical use for the extraction of U(VI) ions from aqueous systems via column sorption under continuous flow. Fibrous membrane form of amidoxime functionalized PIM-1 (AF-PIM-FM) was prepared by electrospinning method owing to its excellent processability in dimethylformamide. Bead-free and uniform fibers were obtained as confirmed by SEM imaging and average fiber diameter was 1.69 ± 0.34 μm for AF-PIM-FM. In addition, electrospun PIM-1 fibrous membrane (PIM-FM) was prepared as a control group. Structural and thermal characterization of powder and membrane forms of the materials were performed using FT-IR, 1 H NMR, XPS, Elemental analyses, TGA, and DSC. The porosity of the samples was measured by N2 sorption isotherms confirming amidoxime PIM-1 still maintain their porosity after functionalization. Amidoxime functionality along with membrane structure makes AF-PIM-FM a promising material for uranyl adsorption. First, a comparison between powder and membrane form of amidoxime functionalized PIM-1 was investigated using batch adsorption process. Although membrane form has shown slightly lower adsorption performance in the batch adsorption process, the advantage of using the membrane in column adsorption processes makes membrane form more feasible for real applications. In addition, amidoxime modification enhanced the uranium adsorption ability of PIM-FM up to 20 times. The effect of initial concentration and pH were investigated along with regeneration of the adsorbents. AF-PIM-FM was successfully used for five adsorption-desorption cycles without having any damage on the fibrous structure.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)