Controlled enzymatic stability and release characteristics of supramolecular chiral peptide amphiphile nanofiber gels

Available
The embargo period has ended, and this item is now available.

Date

2017

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Current Applied Physics

Print ISSN

1567-1739

Electronic ISSN

1878-1675

Publisher

Elsevier B.V.

Volume

17

Issue

5

Pages

785 - 792

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
22
downloads

Series

Abstract

Supramolecular bioarchitectures formed by assembly of achiral or chiral building blocks play important roles in various biochemical processes. Stereochemistry of amino acids is important for structural organization of peptide and protein assemblies and structure-microenvironment interactions. In this study, oppositely charged peptide amphiphile (PA) molecules with L-, D- and mixture of L- and D-amino acid conformations are coassembled into supramolecular nanofibers and formed self-supporting gels at pH 7.4 in water. The enzymatic stability of the PA nanofiber gels was studied in the presence of proteinase K enzyme, which digest a broad spectrum of proteins and peptides. The structural changes on the chiral PA nanofibers were also analyzed at different time periods in the presence of enzymatic activity. Controlled release of a model cargo molecule through the chiral PA nanofiber gels was monitored. The diffusivity parameters were measured for all gel systems. Release characteristics and the enzymatic stability of the peptide nanofiber gels were modulated depending on organization of the chiral PA molecules within the supramolecular assemblies.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)