Browsing by Subject "Light emitting diodes"
Now showing 1 - 20 of 71
- Results Per Page
- Sort Options
Item Open Access Accuracy limits of distance estimation in visible light systems with RGB LEDs(IEEE, 2019-09) Demirel, İlker; Gezici, SinanThe distance estimation problem is investigated for visible light positioning (VLP) systems with red-green-blue (RGB) light emitting diodes (LEDs). The accuracy limits on distance estimation are calculated in terms of the Cramér-Rao lower bounds (CRLBs) for three different scenarios. Scenario 1 and Scenario 2 correspond to synchronous and asynchronous systems, respectively, with known channel attenuation formulas at the receiver. In Scenario 3, a synchronous systems is considered but channel attenuation formulas are not known at the receiver. The derived CRLB expressions reveal the relations among the distance estimation accuracies in the considered scenarios and provide intuitive explanations for the benefits of using RGB LEDs.Item Open Access A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode(American Institute of Physics, 2012-12-06) Yang, X.; Divayana, Y.; Zhao, D.; Swee Leck, K.; Lu, F.; Tiam Tan, S.; Putu Abiyasa, A.; Zhao Y.; Demir, Hilmi Volkan; Wei Sun, X.We report a bright cadmium-free, InP-based quantum dot light-emitting diode (QD-LED) with efficient green emission. A maximum brightness close to 700 cd/m2 together with a relatively low turn-on voltage of 4.5 V has been achieved. With the design of a loosely packed QD layer resulting in the direct contact of poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl) benzidine] (poly-TPD) and 2,2′,2″-(1,3,5-benzinetriyl)-tris(1- phenyl-1-H-benzimidazole) (TPBi) in the device, a ternary complementary white QD-LED consisting of blue component (poly-TPD), green component (QDs), and red component (exciplex formed at the interface between poly-TPD and TPBi) has been demonstrated. The resulting white QD-LED shows an excellent color rendering index of 95.Item Open Access A charge inverter for III-nitride light-emitting diodes(American Institute of Physics Inc., 2016) Zhang Z.-H.; Zhang, Y.; Bi, W.; Geng, C.; Xu S.; Demir, Hilmi Volkan; Sun, X. W.In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO2 insulator layer on the p+-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p+-GaN and SiO2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p+-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.Item Open Access Circularly configured multi-SLM holographic display system(IEEE, 2011) Yaraş, Fahri; Kang, Hoonjong; Onural, LeventThe designed circular holographic display system produces ghost-like 3D optical reconstructions of a computer generated 3D model. System uses six phase-only reflective-type spatial light modulators (SLMs) that are configured circularly. Alignment of the SLMs are successful and gap problem is solved by using half-mirrors. The total number of pixels of the resultant display is 11520 1080. Reconstructions show that increase in the viewing angle is significant compared to the single SLM case. With the help of the proposed system, observer can see the reconstructions binocularly. As a result, comfortable 3D perception is achieved. In order to avoid eye-hazard, LED illumination is also used as an alternative light source. Experimental results are satisfactory. Proposed system can be used as a holographic display system.Item Open Access Colloidal nanocrystals embedded in macrocrystals: methods and applications(American Chemical Society, 2016) Adam, M.; Gaponik N.; Eychmüller A.; Erdem, T.; Soran-Erdem, Z.; Demir, Hilmi VolkanColloidal semiconductor nanocrystals have gained substantial interest as spectrally tunable and bright fluorophores for color conversion and enrichment solids. However, they suffer from limitations in processing their solutions as well as efficiency degradation in solid films. As a remedy, embedding them into crystalline host matrixes has stepped forward for superior photostability, thermal stability, and chemical durability while simultaneously sustaining high quantum yields. Here, we review three basic methods for loading the macrocrystals with nanocrystals, namely relatively slow direct embedding, as well as accelerated methods of vacuum-assisted and liquid-liquid diffusion-assisted crystallization. We discuss photophysical properties of the resulting composites and present their application in light-emitting diodes as well as their utilization for plasmonics and excitonics. Finally, we present a future outlook for the science and technology of these materials.Item Open Access Colloidal quantum dot light-emitting diodes employing phosphorescent small organic molecules as efficient exciton harvesters(American Chemical Society, 2014) Mutlugun, E.; Guzelturk, B.; Abiyasa, A. P.; Gao, Y.; Sun X. W.; Demir, Hilmi VolkanNonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.Item Open Access Construction of multi-layered white emitting organic nanoparticles by clicking polymers(Royal Society of Chemistry, 2015) Keita, H.; Güzeltürk, B.; Pennakalathil, J.; Erdem, T.; Demir, Hilmi Volkan; Tuncel, D.A series of blue, green and red emitting polymers that are appropriately functionalized with alkyne and azide functional groups have been prepared and clicked together to construct bi-layered and tri-layered white emitting core-shell type nanoparticles. Here the use of these organic hetero-nanoparticles as colour converters to realize a white light-emitting diode platform acquiring a colour quality comparable to the existing phosphor-based ones was also demonstrated. © The Royal Society of Chemistry.Item Open Access Controlled growth and characterization of epitaxially-laterally-overgrown InGaN/GaN quantum heterostructures(IEEE, 2010) Sarı, Emre; Akyuz, Özgün; Choi, E. -G.; Lee I.-H.; Baek J.H.; Demir, Hilmi VolkanCrystal material quality is fundamentally important for optoelectronic devices including laser diodes and light emitting diodes. To this end epitaxial lateral overgrowth (ELO) has proven to be a powerful technique for reducing dislocation density in GaN and its alloys [1,2]. Implementation and design of ELO process is, however, critical for obtaining high-quality material with high-efficiency quantum structures for light emitters [3]. ©2010 IEEE.Item Open Access Cooperative localization in hybrid infrared/visible light networks: Theoretical limits and distributed algorithms(Institute of Electrical and Electronics Engineers, 2019) Keskin, M. Furkan; Erdem, Osman; Gezici, SinanLight emitting diode (LED) based visible light positioning (VLP) networks can provide accurate location information in environments where the global positioning system (GPS) suffers from severe signal degradation and/or cannot achieve high precision, such as indoor scenarios. In this manuscript, we propose to employ cooperative localization for hybrid infrared/visible light networks that involve multiple LED transmitters having known locations (e.g., on the ceiling) and visible light communication (VLC) units equipped with both LEDs and photodetectors (PDs) for the purpose of cooperation. In the considered scenario, downlink transmissions from LEDs on the ceiling to VLC units occur via visible light signals, while the infrared spectrum is utilized for device-to-device communications among VLC units. First, we derive the Cramer-Rao lower bound (CRLB) and the maximum likelihood estimator (MLE) for the localization of VLC units in the proposed cooperative scenario. To tackle the nonconvex structure of the MLE, we adopt a set-theoretic approach by formulating the problem of cooperative localization as a quasiconvex feasibility problem, where the aim is to find a point inside the intersection of convex constraint sets constructed as the sublevel sets of quasiconvex functions resulting from the Lambertian formula. Next, we devise two feasibility-seeking algorithms based on iterative gradient projections to solve the feasibility problem. Both algorithms are amenable to distributed implementation, thereby avoiding high-complexity centralized approaches. Capitalizing on the concept of quasi-Fej\'er convergent sequences, we carry out a formal convergence analysis to prove that the proposed algorithms converge to a solution of the feasibility problem in the consistent case. Numerical examples illustrate the improvements in localization performance achieved via cooperation among VLC units and evidence the convergence of the proposed algorithms to true VLC unit locations in both the consistent and inconsistent cases. IEEEItem Open Access Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes(OSA - The Optical Society, 2016) Hasanov N.; Sharma, V. K.; Martinez, P. L. H.; Tan S.T.; Demir, Hilmi VolkanHere we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatelets. The performance enhancement is ascribed to efficient exciton transfer from the donor CdSe nanoplatelet quantum wells to the acceptor CdSe/ZnS nanocrystal quantum dots through F�rster-type nonradiative resonance energy transfer.Item Open Access Cucurbit [7] uril-threaded fluorene-thiophene-based conjugated polyrotaxanes(Royal Society of Chemistry, 2016) Idris, M.; Bazzar, M.; Guzelturk, B.; Demir, Hilmi Volkan; Tuncel, D.Here we investigate the effect of cucurbit[7]uril (CB7) on the thermal and optical properties of fluorene-thiophene based conjugated polyelectrolytes. For this purpose, poly(9,9′-bis(6′′-(N,N,N-trimethylammonium)hexyl)fluorene-alt-co-thiophenelene) P1 and poly(9,9′-bis(6′′-(N,N,N-trimethylammonium)propyl)fluorene-alt-co-thiophenelene) P2 and their CB7-based polyrotaxane counterparts, P1CB7 and P2CB7, are synthesized by threading the part of the conjugated backbone of these polymers with CB7 during their synthesis. Threading efficiency in the P1CB7 containing hexyl pendant of as high as 50% is achieved, but in the case of P2, with the propyl pendant, only around 15% is achieved. We observed significant changes in the optical properties of both P1CB7 and P2CB7 with respect to their polymers P1 and P2. Fluorescent quantum yields of P1 and P2 which are 0.11 and 0.35 have increased to 0.46 and 0.55 for P1CB7 (>4 fold) and P2CB7, respectively. Moreover, polyrotaxanes compared to their polymers exhibit longer fluorescence lifetimes in the solution and the solid state thanks to the suppressed overall nonradiative recombination via encapsulation of the conjugated polymer backbone. Thermal analysis also indicates that polyrotaxanes have higher thermal stabilities than their polymer counterparts. In order to demonstrate the applicability of the synthesized materials, we also fabricated proof-of-concept light emitting diodes from P1 and its CB7-based polyrotaxane counterpart P1CB7. The CB7-integrating polymer showed lower turn-on voltages with high electroluminescence colour purity due to balanced charge injection in P1CB7 as compared to the P1 polymer.Item Open Access Distributed contact flip chip InGaN/GaN blue LED; comparison with conventional LEDs(Elsevier, 2019) Genç, M.; Sheremet, Volodymyr; Elçi, M.; Kasapoğlu, A.; Altuntaş, İ.; Demir, İ.; Eğin, G.; İslamoğlu, Serkan; Gür, E.; Muzafferoğlu, N.; Elagöz, S.; Gülseren, Oğuz; Aydınlı, A.This paper presents high performance, GaN/InGaN-based light emitting diodes (LEDs) in three different device configurations, namely Top Emitting (TE) LED, conventional Flip Chip (FC) and Distributed Contact (DC) FC. Series resistances as low as 1.1 Ω have been obtained from FC device configurations with a back reflecting ohmic contact of Ni/Au/RTA/Ni/Ag metal stack. A small shift has been observed between electroluminescence (EL) emissions of TE LED and the FC LEDs. In addition, FWHM value of the EL emission of DCFC LED has shown the minimum value of 160 meV (26.9 nm). Furthermore, DCFC LED configuration has shown the highest quantum efficiency and power output, with 330 mW at 500 mA current injection, compared to that of traditional wire bonded TE LEDs and the conventional FC LEDs.Item Open Access The effect of growth conditions on the optical and structural properties of InGaN/GaN MQW LED structures grown by MOCVD(Gazi University Eti Mahallesi, 2014) Cetđn, S.; Sağlam, S.; Ozcelđk, S.; Özbay, EkmelFive period InGaN/GaN MQW LED wafers were grown by low pressure MOCVD on an AlN buffer layer, which was deposited on a c-plane (0001)-faced sapphire substrate. The effect of growth conditions, such as the well growth time, growth temperatures, and indium flow rate on the properties of MQW structures were investigated by using high resolution X-ray diffraction and room temperature photoluminescence. By increasing growth temperature, the emission wavelengths showed a blue-shift while it red-shifted via an increase in the indium flow rate. The emission wavelength can be tuned by way of changing the well growth time of the samples. ©2014 Gazi University Eti Mahallesi. All rights reserved.Item Open Access Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer(Wiley-VCH Verlag, 2015) Yang, X.; Hernandez-Martinez, P. L.; Dang C.; Mutlugün, E.; Zhang, K.; Demir, Hilmi Volkan; Sun X. W.A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced electroluminescence by embedding a thin layer of Ag nanoislands into hole transport layer. The maximum external quantum efficiency (EQE) of 7.1% achieved in the present work is the highest efficiency value reported for green-emitting QLEDs with a similar structure, which corresponds to 46% enhancement compared with the reference device. The relevant mechanisms enabling the EQE enhancement are associated with the near-field enhancement via an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Ag nano-islands, which are found to lead to good agreement between the simulation results and the experimental data, providing us with a useful insight important for plasmonic QLEDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Energy-saving quality road lighting with colloidal quantum dot nanophosphors(Walter de Gruyter GmbH, 2014) Erdem, T.; Kelestemur, Y.; Soran-Erdem, Z.; Ji, Y.; Demir, Hilmi VolkanHere the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting. © 2014 Science Wise Publishing & De Gruyter 2014.Item Open Access Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier(Optical Society of America, 2013) Ji Y.; Zhang, Z. -H.; Tan S.T.; Ju, Z. G.; Kyaw, Z.; Hasanov N.; Liu W.; Sun X. W.; Demir, Hilmi VolkanWe study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure. © 2013 Optical Society of America.Item Open Access Enhanced optical characteristics of light emitting diodes by surface plasmon of Ag nanostructures(SPIE, 2011) Jang L.-W.; Ju J.-W.; Jeon J.-W.; Jeon, D.-W.; Choi J.-H.; Lee, S.-J.; Jeon, S.-R.; Baek J.-H.; Sarı, Emre; Demir, Hilmi Volkan; Yoon H.-D.; Hwang, S.-M.; Lee I.-H.We investigated the surface plasmon coupling behavior in InGaN/GaN multiple quantum wells at 460 nm by employing Ag nanostructures on the top of a roughened p-type GaN. After the growth of a blue light emitting diode structure, the p-GaN layer was roughened by inductive coupled plasma etching and the Ag nanostructures were formed on it. This structure showed a drastic enhancement in photoluminescence and electroluminescence intensity and the degree of enhancement was found to depend on the morphology of Ag nanostructures. From the time-resolved photoluminescence measurement a faster decay rate for the Ag-coated structure was observed. The calculated Purcell enhancement factor indicated that the improved luminescence intensity was attributed to the energy transfer from electron-hole pair recombination in the quantum well to electron vibrations of surface plasmon at the Ag-coated surface of the roughened p-GaN. © 2011 SPIE.Item Open Access Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes(American Institute of Physics, 2009-04-28) Nizamoglu, S.; Demir, Hilmi VolkanIn this paper, for their use as nanoluminophors on color-conversion white light emitting diodes (LEDs), we present spectrally resolved relative quantum efficiency and relative color (photon) conversion efficiency of CdSe/ZnS core/shell nanocrystal (NC) emitters in the solid-state film. We observe that both the averaged relative quantum efficiency and the averaged relative photon conversion efficiency of these NC solids increase with the increasing photon pump energy. Therefore, the excitation LED platform emitting at shorter wavelengths facilitates such NC luminophor solids to be more efficiently pumped optically. Furthermore, we investigate the spectral time-resolved spectroscopy of NCs in solution and in film with 0.4-2.4 nmol integrated number of NCs in the spectral range of 610-660 nm. We observe that the average lifetime of NCs increases toward longer wavelengths as the number of in-film NCs increases. With the increased amount of NCs, the average lifetime increases even further and the emission of NCs is shifted further toward red. This is attributed to the enhanced nonradiative energy transfer between these NCs due to the inhomogeneous size distribution. Thus, in principle, for fine tuning of the collective color of NCs for color-conversion LEDs, it is important to control the energy transfer by changing the integrated number of NCs.Item Unknown Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment(OSA - The Optical Society, 2016) Erdem, T.; Soran-Erdem, Z.; Kelestemur, Y.; Gaponik, N.; Demir, Hilmi VolkanHere we report excitonic improvement in color-converting colloidal nanocrystal powders enabled by co-integrating nonpolar greenand red-emitting nanocrystal energy transfer pairs into a single LiCl salt matrix. This leads to nonradiative energy transfer (NRET) between the cointegrated nanocrystals in the host matrix. Here we systematically studied the resulting NRET process by varying donor and acceptor concentrations in the powders. We observed that NRET is a strong function of both of the nanocrystal concentrations and that NRET efficiency increases with increasing acceptor concentration. Nevertheless, with increasing donor concentration in the powders, NRET efficiency was found to first increase (up to a maximum level of 53.9%) but then to decrease. As a device demonstrator, we employed these NRET-improved nanocrystal powders as color-converters on blue light-emitting diodes (LEDs), with the resulting hybrid LED exhibiting a luminous efficiency >70 lm/Welect . The proposed excitonic nanocrystal powders potentially hold great promise for quality lighting and color enrichment applications.Item Unknown Excitonically driven quantum dot light-emitting diodes: exLEDs(Optical Society of America, 2013) Güzeltürk, Burak; Hernandez-Martinez, Pedro Ludwig; Sharma, Vijay Kumar; Coşkun, Yasemin; Ibrahimova, Vusala; Sun, X.W.; Tuncel, Donus; Demir, Hilmi VolkanA hybrid platform of colloidal quantum dots integrated into conjugated polymers is eported for excitonically driven light-emitting diodes having pure quantum dot emission in the electroluminescence spectrum with substantially enhanced efficiency.