Browsing by Subject "Chemical bonds"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Item Open Access Ab initio temperature dependent studies of the homoepitaxial growth on Si(0 0 1) surface(2001) Dağ, S.; Çıracı, Salim; Kılıç, Ç.; Fong, C. Y.We performed ab initio zero temperature and finite temperature molecular dynamics calculations to investigate the homoepitaxial growth on the Si(0 0 1) surface. How do the deposited atoms (adatoms) form addimers and how do the addimers reach their favorable positions at the nucleation site of the growth process are presented. Once two epitaxial addimers, one over the dimer row and oriented perpendicular to the surface dimer bonds and the other over the adjacent trough, are aligned at high temperature, the nucleation site of the growth process is formed. The concerted bond exchange between these addimers and the reconstructed surface dimers is found to be the atomistic mechanism that leads to the homoepitaxial growth. © 2001 Elsevier Science B.V.Item Open Access Accurate method for obtaining band gaps in conducting polymers using a DFT/hybrid approach(American Chemical Society, 1998) Salzner, U.; Pickup, P. G.; Poirier, R. A.; Lagowski, J. B.DFT calculations on a series of oligomers have been used to estimate band gaps, ionization potentials, electron affinities, and bandwidths for polyacetylene, polythiophene, polypyrrole, polythiazole, and a thiophene - thiazole copolymer. Using a slightly modified hybrid functional, we obtain band gaps within 0.1 eV of experimental solid-state values Calculated bond lengths and bond angles for the central ring of sexithiophene differ by less than 0.026 Å and 0.7° from those of the sexithiopnene crystal structure. IPs and EAs are overestimated by up to 0.77 eV compared to experimental bulk values. Extrapolated bandwidths agree reasonably well with bandwidths from band structure calculations.Item Open Access Atomic strings of group IV, III-V, and II-VI elements(American Institute of Physics, 2004) Tongay, S.; Durgun, Engin; Çıracı, SalimA systematic first-principles study of atomic strings made by group IV, III-V, and II-VI elements has revealed interesting mechanical, electronic, and transport properties. The double bond structure underlies their unusual properties. We found that linear chain of C, Si, Ge, SiGe, GaAs, InSb, and CdTe are stable and good conductor, although their parent diamond (zincblende) crystals are covalent (polar) semiconductors but, compounds SiC, BN, AlP, and ZnSe are semiconductors. First row elements do not form zigzag structures.Item Open Access Atomistic structure simulation of silicon nanocrystals driven with suboxide penalty energies(American Scientific Publishers, 2008) Yılmaz, Dündar E.; Bulutay, Ceyhun; Çağın, T.The structural control of silicon nanocrystals embedded in amorphous oxide is currently an important technological problem. In this work, an approach is presented to simulate the structural behavior of silicon nanocrystals embedded in amorphous oxide matrix based on simple valence force fields as described by Keating-type potentials. After generating an amorphous silicon-rich-oxide, its evolution towards an embedded nanocrystal is driven by the oxygen diffusion process implemented in the form of a Metropolis algorithm based on the suboxide penalty energies. However, it is observed that such an approach cannot satisfactorily reproduce the shape of annealed nanocrystals. As a remedy, the asphericity and surface-to-volume minimization constraints are imposed. With the aid of such a multilevel approach, realistic-sized silicon nanocrystals can be simulated. Prediction for the nanocrystal size at a chosen oxygen molar fraction matches reasonably well with the experimental data when the interface region is also accounted. The necessity for additional shape constraints suggests the use of more involved force fields including long-range forces as well as accommodating different chemical environments such as the double bonds.Item Open Access Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films(2011) Genisel, M. F.; Uddin, M. N.; Say, Z.; Kulakci, M.; Turan, R.; Gulseren, O.; Bengu, E.In this study, we implanted Nþ and Nþ 2 ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted Cþ ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.Item Open Access Chiral single-wall gold nanotubes(American Physical Society, 2004) Senger, R. T.; Dag, S.; Çıracı, SalimThe formation of freestanding and tip-suspended chiral-wall (n,m) nanotubes, which were composed of helical atomic strands, from gold atoms was investigated using first-principles calculations, where (n,m) notation defines the structure of the tube. The tubes with 3≤n≤5 were found to be stable and exhibited electronic and transport properties investigated. The (5,3) gold tube was energetically the most favourable. It was observed from the quantum ballistic conductance, band structure and charge density analysis that the current on these wires was less chiral, and no direct correlation between the numbers of conduction channels and helical strands was found.Item Open Access Density functional theory investigation of substituent effects on building blocks of conducting polymers(Elsevier, 1999) Salzner, U.Substituted heterocyclic dimers were calculated employing density functional theory (DFT) and analyzed with the natural bond orbits method (NBO). Substitution in 3- and 4-positions leads to parallel shifting of HOMO and LUMO but does not reduce energy gaps. For bridge dimers, HOMO-LUMO gaps correlate with π-electron densities in the carbon backbone and energy gap reduction correlate with the strength of π-π* interactions from the backbone to the bridging group. Alternating donor-acceptor groups do not reduce energy gaps and lead to systems with average HOMO and LUMO levels compared to the parent molecules.Item Open Access Effect of reactor pressure on optical and electrical properties of InN films grown by high-pressure chemical vapor deposition(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Alevli, M.; Gungor, N.; Alkis, S.; Ozgit Akgun, C.; Donmez, I.; Okyay, Ali Kemal; Gamage, S.; Senevirathna, I.; Dietz, N.; Bıyıklı, NecmiThe influences of reactor pressure on the stoichiometry, free carrier concentration, IR and Hall determined mobility, effective optical band edge, and optical phonon modes of HPCVD grown InN films have been analysed and are reported. The In 3d, and N 1s XPS spectra results revealed In-N and N-In bonding states as well as small concentrations of In-O and N-O bonds, respectively in all samples. InN layers grown at 1 bar were found to contain metallic indium, suggesting that the incorporation of nitrogen into the InN crystal structure was not efficient. The free carrier concentrations, as determined by Hall measurements, were found to decrease with increasing reactor pressure from 1.61×1021 to 8.87×1019 cm-3 and the room-temperature Hall mobility increased with reactor pressure from 21.01 to 155.18 cm2/Vs at 1 and 15 bar reactor pressures, respectively. IR reflectance spectra of all three (1, 8, and 15 bar) InN samples were modelled assuming two distinct layers of InN, having different free carrier concentration, IR mobility, and effective dielectric function values, related to a nucleation/interfacial region at the InN/sapphire, followed by a bulk InN layer. The effective optical band gap has been found to decrease from 1.19 to 0.95 eV with increasing reactor pressure. Improvement of the local structural quality with increasing reactor pressure has been further confirmed by Raman spectroscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Electronic and optical properties of 4.2 μm"N" structured superlattice MWIR photodetectors(Elsevier, 2013) Salihoglu, O.; Hostut M.; Tansel, T.; Kutluer, K.; Kilic A.; Alyoruk, M.; Sevik, C.; Turan, R.; Ergun, Y.; Aydınlı, AtillaWe report on the development of a new structure for type II superlattice photodiodes that we call the "N" design. In this new design, we insert an electron barrier between InAs and GaSb in the growth direction. The barrier pushes the electron and hole wavefunctions towards the layer edges and under bias, increases the overlap integral by about 25% leading to higher detectivity. InAs/AlSb/GaSb superlattices were studied with density functional theory. Both AlAs and InSb interfaces were taken into account by calculating the heavy hole-light hole (HH-LH) splittings. Experiments were carried out on single pixel photodiodes by measuring electrical and optical performance. With cut-off wavelength of 4.2 μm at 120 K, temperature dependent dark current and detectivity measurements show that the dark current is 2.5 × 10 -9 A under zero bias with corresponding R0A resistance of 1.5 × 104 Ω cm2 for the 500 × 500 μm2 single pixel square photodetectors. Photodetector reaches BLIP condition at 125 K with the BLIP detectivity (DBLIP) of 2.6 × 10 10 Jones under 300 K background and -0.3 V bias voltage. © 2012 Elsevier B.V. All rights reserved.Item Open Access Electronic structure of the contact between carbon nanotube and metal electrodes(American Institute of Physics, 2003) Dag, S.; Gülseren, O.; Çıracı, Salim; Yildirim, T.Our first-principles study of the contact between a semiconducting single-walled carbon nanotube ~s-SWNT! and metal electrodes shows that the electronic structure and potential depend strongly on the type of metal. The s-SWNT is weakly side-bonded to the gold surface with minute charge rearrangement and remains semiconducting. A finite potential barrier forms at the contact region. In contrast, the molybdenum surface forms strong bonds, resulting in significant charge transfer and metallicity at the contact. The radial deformation of the tube lowers the potential barrier at the contact and increases the state density at the Fermi level.Item Open Access Energetics and Electronic Structures of Individual Atoms Adsorbed on Carbon Nanotubes(American Chemical Society, 2004) Durgun, Engin; Dag, S.; Çıracı, Salim; Gülseren, O.The adsorption of individual atoms on the semiconducting and metallic single-walled carbon nanotubes (SWNT) has been investigated by using the first principles pseudopotential plane wave method within density functional theory. The stable adsorption geometries and binding energies have been determined for a large number of foreign atoms ranging from alkali and simple metals to the transition metals and group IV elements. We have found that the character of the bonding and associated physical properties strongly depends on the type of adsorbed atoms, in particular, on their valence electron structure. Our results indicate that the properties of SWNTs can be modified by the adsorbed foreign atoms. Although the atoms of good conducting metals, such as Zn, Cu, Ag, and Au, form very weak bonds, transition-metal atoms such as Ti, Sc, Nb, and Ta and group IV elements C and Si are adsorbed with a relatively high binding energy. Owing to the curvature effect, these binding energies are larger than the binding energies of the same atoms on the graphite surface. We have showed that the adatom carbon can form strong and directional bonds between two SWNTs. These connects can be used to produce nanotube networks or grids. Most of the adsorbed transition-metal atoms excluding Ni, Pd, and Pt have a magnetic ground state with a significant magnetic moment. Our results suggest that carbon nanotubes can be functionalized in different ways by their coverage with different atoms, showing interesting applications such as ID nanomagnets or nanoconductors, conducting connects, and so forth.Item Open Access Experimental and theoretical investigations of electronic and atomic structure of Si-nanocrystals formed in sapphire by ion implantation(IOP, 2008) Wainstein, D.; Kovalev, A.; Tetelbaum, D.; Mikhailov, A.; Bulutay, Ceyhun; Aydınlı, AtillaThe semiconductor nanocomposites based on Si nanocrystals in dielectric matrices attract a great amount of attention due to their ability for luminescence in visible and near-IR part of the electromagnetic spectrum. Si nanocrystals in sapphire matrix were formed by Si+ ion implantation with doses from 5×1016 to 3×1017 cm -2 at an accelerating voltage 100 kV and post-implantation annealing at 500-1100 d̀C for 2 hours. Depth distribution of lattice defects, impurities and Si nanocrystals, the peculiarities of interband electronic transitions were investigated by XPS and HREELS. The molecular orbitals and local electronic structure of the Al2O3 matrix with Si nanocrystals was calculated using an atomistic pseudopotential technique. The electronic structure of Si nanocrystals as determined from HREELS measurements is in good agreement with the theoretically calculated electronic structure for Si nanocrystals.Item Open Access Finite temperature studies of Te adsorption on Si(0 0 1)(Elsevier, 2002) Sen, P.; Çıracı, Salim; Batra, I. P.; Grein, C. H.; Sivananthan, S.We perform first principles density functional calculations to investigate the adsorption of Te on the Si(0 0 1) surface from low coverage up to a monolayer coverage. At low coverage, a Te atom is adsorbed on top of the Si surface dimer bond. At higher coverages, Te atoms adsorption causes the Si-Si dimer bond to break, lifting the (2 × 1) reconstruction. We find no evidence of the Te-Te dimer bond formation as a possible source of the (2 × 1) reconstruction at a monolayer coverage. Finite temperature ab initio molecular dynamics calculations show that Te covered Si(0 0 1) surfaces do not have any definitive reconstruction. Vibrations of the bridged Te atoms in the strongly anharmonic potentials prevent the reconstruction structure from attaining any permanent, two-dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction reached conflicting conclusions. © 2002 Elsevier Science B.V. All rights reserved.Item Open Access First-principles study of superlow friction between hydrogenated diamond surfaces(ASME, 2005) Çıracı, Salim; Dağ, SefaAttractive interaction between two clean diamond(001) slabs turns repulsive upon the hydrogenation of surfaces. Even under high loading forces, this repulsive interaction prevents the sliding surfaces from being closer to each other. As a result, calculated lateral force variation generated during sliding has small magnitude under high constant loading forces. Superlow friction observed earlier between diamond like carbon coated surfaces can be understood by the steady repulsive interaction between sliding surfaces, as well as strong and stiff carbon-carbon and carbon-hydrogen bonds which do not favor energy dissipation. In ambient conditions, the steady repulsive interaction is, however, destroyed by oxygenation of hydrogenated surface.Item Open Access FTIR spectroscopic study on nickel(II)-exchanged sulfated alumina: nature of the active sites in the catalytic oligomerization of ethene(Springer, 2002) Davydov, A. A.; Kantcheva, M.; Chepotko, M. L.The nature of the active sites in nickel(II)-exchanged sulfated alumina in the reaction of ethene oligomerization has been studied by means of FTIR spectroscopy of adsorbed CO. It has been established that isolated nickel(I) species are the active sites in this process. These sites are formed by a reduction process, in which protonic centers are involved. The latter are due to the presence of covalently-bonded sulfate ions on the catalyst surface.Item Open Access Linear measurements of nanomechanical phenomena using small-amplitude AFM(Materials Research Society, 2004) Hoffmann, P. M.; Patil, S.; Matei, G.; Tanülkü, A.; Grimble, R.; Özer, Ö.; Jeffery, S.; Oral, Ahmet; Pethica, J.Dynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.Item Open Access Microcavity enhanced amorphous silicon photoluminescence(IEEE, 1997) Serpengüzel, Ali; Aydınlı, Atilla; Bek, AlpanA microcavity enhancement of room temperature photoluminescence (PL) of a hydrogenated amorphous silicon (a-Si:h) was performed. A quantum confinement model was developed to describe the occurrence of the PL in the bulk a-Si:H. According to the model, small a-Si clusters are in a matrix of a-Si:H. The regions with Si-H, having larger energy gaps due to strong Si-H bonds, isolate these clusters, and form barrier regions around them. The PL originates from these a-Si clusters.Item Open Access Nanomechanics using an ultra-small amplitude AFM(Cambridge University Press, 2001) Hoffmann, P. M.; Jeffery, S.; Oral, Ahmet; Grimble, R. A.; Özer, H. Özgür; Pethica, J. B.A new type of AFM is presented which allows for direct measurements of nanomechanical properties in ultra-high vacuum and liquid environments. The AFM is also capable to atomic-scale imaging of force gradients. This is achieved by vibrating a stiff lever at very small amplitudes of less than 1 Å (peak-to-peak) at a sub-resonance amplitude. This linearizes the measurement and makes the interpretation of the data straight-forward. At the atomic scale, interaction force gradients are measured which are consistent with the observation of single atomic bonds. Also, atomic scale damping is observed which rapidly rises with the tip-sample separation. A mechanism is proposed to explain this damping in terms of atomic relaxation in the tip. We also present recent results in water where we were able to measure the mechanical response due to the molecular ordering of water close to an atomically flat surface.Item Open Access Photoswitchable molecular rings for solar-thermal energy storage(2013) Durgun, Engin; Grossman J.C.Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers. © 2013 American Chemical Society.Item Open Access Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal(Elsevier, 2016-11) Niaz, S.; Zdetsis, A. D.; Koukaras, E. N.; Gülseren, O.; Sadiq, I.In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.