Browsing by Subject "AlN"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Fabrication of ALN/GAN MIS-Hemt with SIN as gate dielectric and performance enhancement with ALD deposited alumina(2016-10) Sağkal, SağnakSilicon based transistors reached a limit, especially for high power and high frequency applications due to their relatively low bandgap and breakdown voltage. With its higher bandgap and breakdown voltage, GaN based transistors are promising devices for high power and high frequency applications. In particular with its high mobility due to the 2D Electron Gas at its interface, AlN/GaN heterostructure is a promisimg option to be used for such applications. High Electron Mobility Transistors(HEMT) fabricated on this heterostructure can work under higher voltages and higher frequencies when compared with standard silicon based transistors due to these superior properties. Also, as current electronics technology is mostly depend on Silicon based circuits, fabrication of these AlN/GaN HEMTs on Silicon substrates will provide easiness to integrate this technology to current systems. However, these transistors can suer from high leakage currents, which can cause a high power consumption problem. One solution to this problem is depositing a dielectric under gate area and such kind of transistors are called as MIS-HEMTs. In this thesis, MOCVD grown AlN/GaN on Silicon samples are used for fabrication of MIS-HEMTs. Before the fabrication of the transistors, a study on formation of ohmic contacts on these samples is performed. Then, two different AlN/GaN MIS-HEMTs with different gate dielectrics are fabricated and characterized. First type of samples have MOCVD grown SiN as gate dielectric and for second type of transistors, an alumina layer is deposited with ALD on top of SiN under gate area to decrease the gate leakage. Both of the transistors can remain gate control up to +2V gate bias. At least a three order of magnitude of decrease in gate leakage current is observed for high negative gate biases after deposition of alumina. Also, a gate leakage current in the order of 10¯¹º-10¯¹¹ A is observed for lower negative biases. A peak transconductance of 2:57mS is obtained for the transistors with gate length of 2µm, which is decreased to 1:71mS after alumina deposition.Item Open Access Functionalization of group V monolayers and their compounds: alloying, doping and surface modification(2020-11) Kanlı, MuammerThere has been growing interest during the last decade in two-dimensional (2D) materials due to their important roles in various scientific and technological applications such as detectors, lasers and light emitting diodes. In this thesis we present a theoretical investigation of a couple of such 2D materials from group V monolayers and their compounds. Firstly, ordered alloys of GaxAl1−xN hexagonal monolayer are studied and the effect of Al content on mechanical, electronic, thermal and optical properties are investigated. The optimized lattice constants and band gaps change in accordance to Vegard’s Law. Low barrier energies and favorable substitution of Ga by Al may show feasibility of fabrication. Segregation is also checked with mixing energy calculations. The dynamical stability of alloys is shown by phonon spectrum analysis and MD simulations. GaxAl1−xN alloys give lower in-plane stiffness than h-BN or graphene, but higher Poisson’s ratio than most realized 2D systems. Heat capacity of alloys delivers a decrease with Al content at low temperatures but it converges to the classical limit at high temperatures. The absorption onset of GaxAl1−xN alloys remain in the near UV range and prominent absorption peaks blue-shifts with increasing x in compliance with the variation of the band gap. The considered systems, in regard to their stability and tunable fundamental properties seem to be very promising 2D semiconductors for wide range of applications at reduced scales. Then, the interaction of alkali metal atoms (Li, Na, and K) with single layer and periodic structures of hb-As and sw-As phases are revealed by first-principles methods. Arsenene phases are considered to be used as electrodes (anode) for ion-batteries. Strong alkali-electrode binding and low diffusion energy barriers gives out better cycling stability and faster diffusion, respectively. hb-As shows better storage capacity than sw-As. However, deviations from ordered pattern and decline of formation energy with increasing doping level point out a possible structural transformation. By MD calculations, crystalline to amorphous phase transition is seen even for low concentrations level at ambient temperature. The average open-circuit voltages of 0.68-0.88 V (0.65-0.98 V) with specific capacity up to 715 mAhg−1 (358 mAhg−1) are calculated for single layer (periodic) configurations. Overall, non-crystalline phases are calculated to offer more favorable structures than crystalline configurations and they provide more coherent results when compared with experimental data. The obtained voltage profile together with low diffusion barriers and strong metal-electrode binding suggests arsenene as a promising anode material to be used in for alkali-ion battery applications. Lastly, the formation of dumbbell (DB) geometry upon adsorption of Ga, N adatoms to GaN monolayer is investigated. While Ga-N DBs are unstable, Ga-Ga and N-N DB geometries are predicted to form in an exothermic and spontaneous scheme. Cohesive energy of hexagonal GaN monolayer decreases when a DB is formed on its surface. Electronic structures for Ga-Ga DBs for 2×2, 3×3, 4×4 and 5×5 phases show spinpolarized and degenerate bands mainly contributed by p-orbitals of the atoms in impurity zone. Degenarated bands are not observed for N-N dumbbell for HDP, TDP, 2×2 and 3×3 phases. Upon DB formation, semiconductor GaN monolayer become spin-polarized semiconductor with varying band gap, where this functionalization allows electronic structure to be tuned substantionally. This would be highly desired for nanoscale electronic and optical devices. These Ga-Ga and N-N DB geometries may also be used for the synthesis of layered GaN structures.Item Open Access Low - temperature self - limiting growth of III - nitride thin films by plasma - enhanced atomic layer deposition(American Scientific Publishers, 2012) Bıyıklı, Necmi; Ozgit, C.; Donmez, I.We report on the low-temperature self-limiting growth and characterization of III-Nitride thin films. AlN and GaN films were deposited by plasma-enhanced atomic layer deposition (PEALD) on various substrates using trimethylaluminum (TMA), trimethylgallium (TMG) and triethylgallium (TEG) as group-III, and ammonia (NH3) as nitrogen precursor materials. Self-limiting growth behavior, which is the major characteristic of an ALD process, was achieved for both nitride films at temperatures below 200 °C. AlN deposition rate saturated around 0.86 Å/cycle for TMA and NH3 doses starting from 0.05 and 40 s, respectively, whereas GaN growth rate saturated at a lower value of 0.56 Å/cycle and 0.48 Å/cycle for TMG and TEG doses 0.015 s and 1 s, respectively. The saturation dose for NH3 was measured as 90 s and 120 s, for TMG and TEG experiments, respectively. Within the self-limiting growth temperature range (ALD window), film thicknesses increased linearly with the number of deposition cycles. At higher temperatures (≥225 °C and ≥350 °C for AlN and GaN respectively), deposition rate became temperature-dependent, with increasing growth rates. Chemical composition and bonding states of the films deposited within the self-limiting growth regime were investigated by X-ray photoelectron spectroscopy (XPS). GaN films exhibited high oxygen concentrations regardless of the precursors choice, either TMG or TEG, whereas low-oxygen incorporation in AlN films was confirmed by high resolution Al 2p and N 1s spectra of AlN films. AlN films were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction (GIXRD). GaN films showed amorphous-like XRD signature, confirming the highly defective layers. High-resolution transmission electron microscopy (HR-TEM) images of the AlN thin films revealed a microstructure consisting of several-nanometer sized crystallites, whereas GaN films exhibited sub-nm small crystallites dispersed in an amorphous matrix.Item Open Access Low-temperature hollow cathode plasma-assisted atomic layer deposition of crystalline III-nitride thin films and nanostructures(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Ozgit Akgun, C.; Goldenberg, E.; Bolat, S.; Tekcan, B.; Kayaci, F.; Uyar, Tamer; Okyay, Ali Kemal; Bıyıklı, NecmiHollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) is a promising technique for obtaining III-nitride thin films with low impurity concentrations at low temperatures. Here we report our previous and current efforts on the development of HCPA-ALD processes for III-nitrides together with the properties of resulting thin films and nanostructures. The content further includes nylon 6,6-GaN core-shell nanofibers, proof-of-concept thin film transistors and UV photodetectors fabricated using HCPA-ALD-grown GaN layers, as well as InN thin films deposited by HCPA-ALD using cyclopentadienyl indium and trimethylindium precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Preparation of Al 2O 3and AlN nanotubes by atomic layer deposition(Cambridge University Press, 2012) Ozgit-Akgun, Çagla; Kayacı, Fatma; Dönmez, İnci; Çağatay, Engin; Uyar, Tamer; Bıyıklı, NecmiAl 2O 3 and AlN nanotubes were fabricated by depositing conformal thin films via atomic layer deposition (ALD) on electrospun nylon 66 (PA66) nanofiber templates. Depositions were carried out at 200°C, using trimethylaluminum (TMAl), water (H 2O), and ammonia (NH 3) as the aluminum, oxygen, and nitrogen precursors, respectively. Deposition rates of Al 2O 3 and AlN at this temperature were ∼1.05 and 0.86 Å/cycle. After the depositions, Al 2O 3- and AlN-coated nanofibers were calcinated at 500°C for 2 h in order to remove organic components. Nanotubes were characterized by using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). AlN nanotubes were polycrystalline as determined by high resolution TEM (HR-TEM) and selected area electron diffraction (SAED). TEM images of all the samples reported in this study indicated uniform wall thicknesses. © 2012 Materials Research Society.Item Open Access Resistive switching mechanism and device applications of ZnO and Ain thin films(2014) Özcan, AyşeResistive switching memories are potential candidates for next generation nonvolatile memory device applications due to natural simplicity in structure, fast switching speed, long retention time, low power consumption, suitability for 3D integration, excellent scalability and CMOS compatibility. However, the atomic scale mechanisms behind resistive switching are still being debated. In this work we investigate resistive switching mechanisms in ZnO and AlN thin films. The structural and physical changes in ZnO thin films during resistive switching are investigated via TEM, EDX, EFTEM techniques. We also investigate application of resisitive switching to reconfigurable optical surfaces. Recently, resistive switching in nitride films such as AlN is attracting increasing attention. The wide band gap, high electrical resistivity, and high thermal conductivity of AlN make it a good candidate for a resistive switching memory device. We report self-compliant resistive switching behavior in AlN films which is deposited by atomic layer deposition.Item Open Access Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method(American Institute of Physics, 2010-07-15) Lisesivdin, S. B.; Yildiz, A.; Balkan, N.; Kasap, M.; Ozcelik, S.; Özbay, EkmelWe carried out the temperature (22-350 K) and magnetic field (0.05 and 1.4 T) dependent Hall mobility and carrier density measurements on Al 0.22Ga0.78N/GaN heterostructures with AlN interlayer grown by metal-organic chemical-vapor deposition. Hall data is analyzed with a simple parallel conduction extraction method and temperature dependent mobility and carrier densities of the bulk and two-dimensional (2D) electrons are extracted successfully. The results for the bulk carriers are discussed using a theoretical model that includes the most important scattering mechanisms that contribute to the mobility. In order to investigate the mobility of two-dimensional electron gas, we used a theoretical model that takes into account the polar optical phonon scattering, acoustic phonon scattering, background impurity scattering, and interface roughness scattering in 2D. In these calculations, the values are used for the deformation potential and ionized impurity density values were obtained from the bulk scattering analysis. Therefore, the number of fitting parameters was reduced from four to two. © 2010 American Institute of Physics.Item Open Access Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition(2012) Ozgit, C.; Donmez I.; Alevli, M.; Bıyıklı, NecmiWe report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH 3). At 185 °C, deposition rate saturated for TMA and NH 3 doses starting from 0.05 and 40 s, respectively. Saturative surface reactions between TMA and NH 3 resulted in a constant growth rate of ∼ 0.86 Å/cycle from 100 to 200 °C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (≤ 225 °C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 °C were investigated by X-ray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 °C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at ∼ 5.8 eV and an optical transmittance of > 95% in the visible region of the spectrum. © 2011 Elsevier B.V. All rights reserved.Item Open Access Structural properties of AIN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures(Wiley, 2012) Alevli, M.; Ozgit, C.; Donmez, I.; Bıyıklı, NecmiCrystalline aluminum nitride (AlN) films have been prepared by plasma-enhanced atomic layer deposition (PEALD) within the temperature range from 100 to 500 °C. A self-limiting, constant growth rate per cycle temperature window (100-200 °C) was established which is the major characteristic of an ALD process. At higher temperatures (>225 °C), deposition rate increased with temperature. Chemical composition, crystallinity, surface morphology, mass density, and spectral refractive index were studied for AlN films. X-ray photoelectron spectroscopy (XPS) analyses indicated that besides main Al-N bond, the films contained Al-O-N, Al-O complexes, and Al-Al metallic aluminum bonds as well. Crystalline hexagonal AlN films were obtained at remarkably low growth temperatures. The mass density increased from 2.65 to 2.96 g/cm 3 and refractive index of the films increased from 1.88 to 2.08 at 533 nm for film growth temperatures of 100 and 500 °C, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.