Low - temperature self - limiting growth of III - nitride thin films by plasma - enhanced atomic layer deposition

Date

2012

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Nanoscience and Nanotechnology Letters

Print ISSN

1941 - 4900

Electronic ISSN

19414919

Publisher

American Scientific Publishers

Volume

4

Issue

10

Pages

1008 - 1014

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We report on the low-temperature self-limiting growth and characterization of III-Nitride thin films. AlN and GaN films were deposited by plasma-enhanced atomic layer deposition (PEALD) on various substrates using trimethylaluminum (TMA), trimethylgallium (TMG) and triethylgallium (TEG) as group-III, and ammonia (NH3) as nitrogen precursor materials. Self-limiting growth behavior, which is the major characteristic of an ALD process, was achieved for both nitride films at temperatures below 200 °C. AlN deposition rate saturated around 0.86 Å/cycle for TMA and NH3 doses starting from 0.05 and 40 s, respectively, whereas GaN growth rate saturated at a lower value of 0.56 Å/cycle and 0.48 Å/cycle for TMG and TEG doses 0.015 s and 1 s, respectively. The saturation dose for NH3 was measured as 90 s and 120 s, for TMG and TEG experiments, respectively. Within the self-limiting growth temperature range (ALD window), film thicknesses increased linearly with the number of deposition cycles. At higher temperatures (≥225 °C and ≥350 °C for AlN and GaN respectively), deposition rate became temperature-dependent, with increasing growth rates. Chemical composition and bonding states of the films deposited within the self-limiting growth regime were investigated by X-ray photoelectron spectroscopy (XPS). GaN films exhibited high oxygen concentrations regardless of the precursors choice, either TMG or TEG, whereas low-oxygen incorporation in AlN films was confirmed by high resolution Al 2p and N 1s spectra of AlN films. AlN films were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction (GIXRD). GaN films showed amorphous-like XRD signature, confirming the highly defective layers. High-resolution transmission electron microscopy (HR-TEM) images of the AlN thin films revealed a microstructure consisting of several-nanometer sized crystallites, whereas GaN films exhibited sub-nm small crystallites dispersed in an amorphous matrix.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)