Low - temperature self - limiting growth of III - nitride thin films by plasma - enhanced atomic layer deposition
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We report on the low-temperature self-limiting growth and characterization of III-Nitride thin films. AlN and GaN films were deposited by plasma-enhanced atomic layer deposition (PEALD) on various substrates using trimethylaluminum (TMA), trimethylgallium (TMG) and triethylgallium (TEG) as group-III, and ammonia (NH3) as nitrogen precursor materials. Self-limiting growth behavior, which is the major characteristic of an ALD process, was achieved for both nitride films at temperatures below 200 °C. AlN deposition rate saturated around 0.86 Å/cycle for TMA and NH3 doses starting from 0.05 and 40 s, respectively, whereas GaN growth rate saturated at a lower value of 0.56 Å/cycle and 0.48 Å/cycle for TMG and TEG doses 0.015 s and 1 s, respectively. The saturation dose for NH3 was measured as 90 s and 120 s, for TMG and TEG experiments, respectively. Within the self-limiting growth temperature range (ALD window), film thicknesses increased linearly with the number of deposition cycles. At higher temperatures (≥225 °C and ≥350 °C for AlN and GaN respectively), deposition rate became temperature-dependent, with increasing growth rates. Chemical composition and bonding states of the films deposited within the self-limiting growth regime were investigated by X-ray photoelectron spectroscopy (XPS). GaN films exhibited high oxygen concentrations regardless of the precursors choice, either TMG or TEG, whereas low-oxygen incorporation in AlN films was confirmed by high resolution Al 2p and N 1s spectra of AlN films. AlN films were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction (GIXRD). GaN films showed amorphous-like XRD signature, confirming the highly defective layers. High-resolution transmission electron microscopy (HR-TEM) images of the AlN thin films revealed a microstructure consisting of several-nanometer sized crystallites, whereas GaN films exhibited sub-nm small crystallites dispersed in an amorphous matrix.