BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lisesivdin, S. B."

Filter results by typing the first few letters
Now showing 1 - 20 of 39
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements
    (Elsevier, 2019) Narin, P.; Abbas, J. M.; Atmaca, G.; Kutlu, E.; Lisesivdin, S. B.; Özbay, Ekmel
    In this study, electronic properties of graphene nanoribbons with armchair edges (AGNRs) have been investigated with Density Functional Theory (DFT). Effects of heavy metal (HM) elements, including Zinc (Zn), Cadmium (Cd) and Mercury (Hg) atoms on electronic behavior of AGNRs have been calculated by passivating for both one and two edges of AGNRs in detail. To explain the electronic behavior of investigated AGNRs, the electronic band structure, the density of states (DOS), total energy have been calculated. Energetically favorable structures have been determined using calculated binding energy values. The obtained bandgap values of investigated structures changes between 0.30 and 0.64 eV. Increasing atomic number of passivation atoms have led to an increment in the bandgap of AGNRs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ab initio study of Ru-terminated and Ru-doped armchair graphene nanoribbons
    (Taylor and Francis, 2012) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    We investigate the effects of ruthenium (Ru) termination and Ru doping on the electronic properties of armchair graphene nanoribbons (AGNRs) using first-principles methods. The electronic band structures, geometries, density of states, binding energies, band gap information, and formation energies of related structures are calculated. It is well founded that the electronic properties of the investigated AGNRs are highly influenced by Ru termination and Ru doping. With Ru termination, metallic band structures with quasi-zero-dimensional, one-dimensional and quasi-one-dimensional density of states (DOS) behavior are obtained in addition to dominant one-dimensional behavior. In contrast to Ru termination, Ru doping introduces small but measurable (12.4 to 89.6meV) direct or indirect band gaps. These results may present an additional way to produce tunable band gaps in AGNRs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Contributions of impurity band and electron-electron interactions to magnetoconductance in AlGaN
    (Taylor & Francis, 2010-06-30) Tasli, P.; Yildiz, A.; Kasap, M.; Özbay, Ekmel; Lisesivdin, S. B.; Ozcelik, S.
    Low temperature electrical measurements of conductivity, the Hall effect and magnetoconductance were performed on a degenerate AlGaN sample. The sample exhibited negative magnetoconductance at low magnetic fields and low temperatures, with the magnitude being systematically dependent on temperature. The measured magnetoconductance was compared with models proposed previously by Sondheimer and Wilson [Proc. R. Soc. Lond. Ser. A 190 (1947) p. 435] and Lee and Ramakrishan [Rev. Mod. Phys. 57 (1985) p. 287]. Data were analyzed as the sum of the contribution of a two-band and electron-electron interactions to the magnetoconductance, applying these models to describe the observed behavior. Least-squares fits to the data are presented. In the sample, magnetoconductance can be explained reasonably well by assuming these contributions to the measured magnetoconductance. It was found that theoretical and experimental data were in excellent agreement.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Determination of the critical indium composition corresponding to the metal-insulator transition in InxGa1-xN (0.06 ≤ x ≤ 0.135) layers
    (Elsevier, 2009-10-13) Yildiz, A.; Lisesivdin, S. B.; Tasli, P.; Özbay, Ekmel; Kasap, M.
    The low-temperature conductivity of InxGa1-xN alloys (0.06 ≤ x ≤ 0.135) is analyzed as a function of indium composition (x). Although our InxGa1-xN alloys were on the metallic side of the metal-insulator transition, neither the Kubo-Greenwood nor Born approach were able to describe the transport properties of the InxGa1-xN alloys. In addition, all of the InxGa1-xN alloys took place below the Ioeffe-Regel regime with their low conductivities. The observed behavior is discussed in the framework of the scaling theory. With decreasing indium composition, a decrease in thermal activation energy is observed. For the metal-insulator transition, the critical indium composition is obtained as xc = 0.0543 for InxGa1-xN alloys.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Determination of the LO phonon energy by using electronic and optical methods in AIGaN/GaN
    (Springer, 2012) Celik, O.; Tiras, E.; Ardali, S.; Lisesivdin, S. B.; Özbay, Ekmel
    The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Determination of two-dimensional electron and hole gas carriers in AlGaN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition
    (Elsevier BV, 2008-02-29) Acar, S.; Lisesivdin, S. B.; Kasap, M.; Özcelik, S.; Özbay, Ekmel
    Resistivity and Hall effect measurements on nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrates prepared by metal organic chemical vapor deposition have been carried out as a function of temperature (20-300 K) and magnetic field (0-1.4 T). Variable magnetic field Hall data have been analyzed using the improved quantitative mobility spectrum analysis technique. The mobility and density of the two-dimensional electron gas at the AlGaN/GaN interface and the two-dimensional hole gas at the GaN/AIN interface are separated by quantitative mobility spectrum analysis. The analysis shows that two-channel conduction is present in nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrate.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Double subband occupation of the two-dimensional electron gas in InxAl1-XN/AlN/GaN/AlN heterostructures with a low indium content (0.064 ≤ x ≤ 0.140) barrier
    (Elsevier, 2010-05-08) Lisesivdin, S. B.; Tasli, P.; Kasap, M.; Ozturk, M.; Arslan, E.; Ozcelik, S.; Özbay, Ekmel
    We present a carrier transport study on low indium content (0.064 ≤ x ≤ 0.140) InxAl1 - xN/AlN/GaN/AlN heterostructures. Experimental Hall data were carried out as a function of temperature (33-300 K) and a magnetic field (0-1.4 T). A two-dimensional electron gas (2DEG) with single or double subbands and a two-dimensional hole gas were extracted after implementing quantitative mobility spectrum analysis on the magnetic field dependent Hall data. The mobility of the lowest subband of 2DEG was found to be lower than the mobility of the second subband. This behavior is explained by way of interface related scattering mechanisms, and the results are supported with a one-dimensional self-consistent solution of non-linear Schrödinger- Poisson equations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    DX-center energy calculation with quantitative mobility spectrum analysis in n-AlGaAs/GaAs structures with low Al content
    (ELSEVIER, 2009-03-17) Lisesivdin, S. B.; Altuntas, H.; Yildiz, A.; Kasap, M.; Özbay, Ekmel; Ozcelik, S.
    Experimental Hall data that were carried out as a function of temperature (60-350 K) and magnetic field (0-1.4 T) were presented for Si-doped low Al content (x=0.14) n-AlxGa1-xAs/GaAs heterostructures that were grown by molecular beam epitaxy (MBE). A 2-dimensional electron gas (2DEG) conduction channel and a bulk conduction channel were founded after implementing quantitative mobility spectrum analysis (QMSA) on the magnetic field dependent Hall data. An important decrease in 2DEG carrier density was observed with increasing temperature. The relationship between the bulk carriers and 2DEG carriers was investigated with 1D self consistent Schrödinger-Poisson simulations. The decrement in the 2DEG carrier density was related to the DX-center carrier trapping. With the simulation data that are not included in the effects of DX-centers, 17 meV of effective barrier height between AlGaAs/GaAs layers was found for high temperatures (T>300 K). With the QMSA extracted values that are influenced by DX-centers, 166 meV of the DX-center activation energy value were founded at the same temperatures.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures
    (Institute of Physics Publishing Ltd., 2009) Teke, A.; Gökden, S.; Tülek, R.; Leach, J.H.; Fan, Q.; Xie, J.; Özgür, Ü.; Morkoç, H.; Lisesivdin, S. B.; Özbay, Ekmel
    The scattering mechanisms governing the transport properties of high mobility AllnN/AlN/GaN two-dimensional electron gas (2DEG) heterostructures with various AIN spacer layer thicknesses from zero to 2 nm were presented. The major scattering processes including acoustic and optical phonons, ionized impurity, interface roughness, dislocation and alloy disorder were applied to the temperature-dependent mobility data. It was found that scattering due mainly to alloy disorder limits the electron mobility for samples having spacer layer thicknesses up to 0.3 nm. On the other hand, alloy scattering is greatly reduced as the AlN spacer layer thickness increases further, and hence the combination of acoustic, optical and interface roughness become operative with different degrees of effectiveness over different temperature ranges. The room-temperature electron mobility was observed to increase gradually as the AlN spacer layer increases. A peak electron mobility of 1630 cm2 V-1s -1 was realized for the sample consisting of a 1 nm AlN spacer layer. Then, the electron mobility decreased for the sample with 2 nm AlN. Moreover, the measured 2DEG densities were also compared with the theoretical predictions, which include both piezoelectric and spontaneous polarization components existing at AlN/GaN interfaces. The experimental sheet carrier densities for all AllnN/AlN/GaN HEMT structures were found to be in excellent agreement with the theoretical predictions when the parasitic (unintentional) GaN layer deposited between AlN and AllnN was taken into account. From these analyses, 1 nm AlN spacer layer thickness is found to be the optimum thickness required for high electron mobility and hence low sheet resistance once the sheet carrier density is increased to the theoretically expected value for the sample without unintentional GaN layer.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effect of InxGa1−xN back-barriers on the dislocation densities in Al0.31Ga0.69N/AlN/GaN/InxGa1−xN/GaN heterostructures (0.05 ≤ x ≤ 0.14)
    (Elsevier, 2013-01) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    Al0.31Ga0.69N/AlN/GaN/InxGa1-xN/GaN heterostructures grown with the metal-organic chemical vapor deposition (MOCVD) technique with different InxGa1-xN back-barriers with In mole fractions of 0.05 <= x <= 0.14 were investigated by using XRD measurements. Screw, edge, and total dislocations, In mole fraction of back-barriers, Al mole fraction, and the thicknesses of front-barriers and lattice parameters were calculated. Mixed state dislocations with both edge and screw type dislocations were observed. The effects of the In mole fraction difference in the back-barrier and the effect of the thickness of front-barrier on crystal quality are discussed. With the increasing In mole fraction, an increasing dislocation trend is observed that may be due to the growth temperature difference between ultrathin InxGa1-xN back-barrier and the surrounding layers.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of substitutional as impurity on electrical and optical properties of β-Si3N4 structure
    (Elsevier Ltd, 2016) Kutlu, E.; Narin, P.; Atmaca, G.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    β-Si3N4 is used as the gate dielectric for surface passivation in GaN-based, high-electron mobility transistors(HEMTs). In this study, the electrical and optical characteristics of the hexagonal β-Si3N4 crystal structure were calculated using density functional theory (DFT) and local-density approximation (LDA). Calculations of the electronic band structure and the density of states (DOS) were made for the pure β-Si3N4 crystal structure and the β-Si3N4 crystal doped with an arsenic (As) impurity atom. In addition, the optical properties such as the static dielectric constant, refractive index, extinction coefficient, absorption coefficient and reflection coefficient were examined depending on the photon energy. As a result of these calculations, it was observed that the As impurity atom drastically changed the electrical and optical properties of the pure β-Si3N4 crystalline structure, and improvements are suggested for potential further studies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of various pseudomorphic AIN layer insertions on the electron densities of two-dimensional electron gas in lattice-matched In0.18AI0.82N/GaN based heterostructures
    (Institutul National de Cercetare-Dezvoltare pentru Optoelectronica, 2009) Lisesivdin, S. B.; Özbay, Ekmel
    We explored the effects of various pseudomorphic AlN layer insertions in lattice-matched In0.18Al0.82N/GaN based heterostructures on band structures and carrier densities with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. According to the calculations, important increase in carrier density is expected with an increasing number of AlN insertions in In0.18Al0.82N barrier. The effect of the position of an AlN layer in In0.18Al0.82N barrier is also investigated. An additional AlN layer insertion in the GaN layer is calculated in detail with the help of an experimental point of view, in which the possible effects on both carrier density and mobility are discussed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms
    (Taylor and Francis, 2018) Kutlu, E.; Narin, P.; Lisesivdin, S. B.; Özbay, Ekmel
    In this study, the electronic and the optical properties of monolayer black phosphorus (BP) doped with Gold (Au), Tin (Sn) and Iodine (I) atoms have been investigated by the density-functional theory (DFT) method. In the calculations, the electronic and the optical properties of monolayer BP have been substantially changed with doping. Monolayer BP has a narrow bandgap as 0.85 eV, BP doped with these atoms, results in a metallic behaviour and nearly spin gapless band gap behaviour. The dielectric constant of BP which shows anisotropic optical properties due to different edge states as zigzag and armchair has been changed with doping especially with Au.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms
    (Elsevier B.V., 2018) Ömeroğlu, O.; Kutlu, E.; Narin, P.; Lisesivdin, S. B.; Özbay, Ekmel
    The effect of substitutional impurities as Zinc (Zn), Cadmium (Cd) and Mercury (Hg) on electronic properties of graphene nanoribbons (GNRs) was investigated by using Density Functional Theory (DFT). A substantial change in the electronic properties of GNR structures was observed while changing the position of dopant atom from the edge to the center of armchair graphene nanoribbons (AGNRs) and zigzag graphene nanoribbons (ZGNRs). The calculations are shown that the electronic band gap of GNRs can be controlled depending on the position of dopant atoms. The calculated electronic band structures for both AGNRs and ZGNRs show spin-dependent metallic or semiconductor behavior according to the position of dopant atoms. From the Density of States (DOS) information, quasi-zero-dimensional (Q0D) and quasi-one-dimensional (Q1D) type behaviors are observed. It is shown that because the doped ZGNRs had the lowest total energies, ZGNRs are energetically more stable than AGNRs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic properties of Li-doped zigzag graphene nanoribbons
    (Elsevier B.V., 2016) Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivations
    (Elsevier, 2018) Abbas, J. M..; Narin, P.; Kutlu, E.; Lisesivdin, S. B.; Özbay, Ekmel
    In this study, the electronic properties of ZnO nanoribbons with zigzag edges (ZZnONr) have been investigated with Density Functional Theory (DFT). After a geometric optimization, the electronic band structures, the density of states (DOS) of ZZnONr passivated with Hydrogen (H) and Magnesium (Mg) atoms were calculated ZZnONr. It is shown that the increasing width of ZZnONrs has led to a decrement in energy band gap of the studied structures. While ZZnONr passivated with Mg for Zn-rich edge have not been shown a spin dependency, the structure passivated with Mg for O-rich edge have exhibited spin-dependent band structure. The energetically most stable structures have been determined as ZZnONr passivated with Mg for Zn-rich edge. ZZnONr passivated with Mg atoms for both edges have a graphene-like band structure especially for 8 and 10 atom width structures and this property of ZZnONrs could be important in terms of the electron transport for ZZnONrs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic transport characterization of AlGaN∕GaN heterostructures using quantitative mobility spectrum analysis
    (AIP Publishing LLC, 2007-09-06) Lisesivdin, S. B.; Yildiz, A.; Acar, S.; Kasap, M.; Ozcelik, S.; Özbay, Ekmel
    Resistivity and Hall effect measurements in nominally undoped Al0.25Ga0.75N/GaN heterostructures grown on sapphire substrate by metal-organic chemical vapor deposition are carried out as a function of temperature (20-350 K) and magnetic field (0-1.5 T). The measurement results are analyzed using the quantitative mobility spectrum analysis techniques. It is found that there is strong two-dimensional electron gas localization below 100 K, while the thermally activated minority carriers with the activation energies of similar to 58 and similar to 218 meV contribute to the electron transport at high temperatures.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Energy relaxation of electrons in InGaN quantum wells
    (Springer New York LLC, 2015-04) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Balkan, N.; Atmaca, G.; Narin, P.; Cakmak, H.; Özbay, Ekmel
    In this study, electron energy relaxation mechanisms in HEMT structures with different InxGa1−xN-channel quantum well (QW) widths are investigated. Theoretical value of the inelastic scattering rates is carried out at electron temperatures between 30 K (−243 °C) < Te < 700 K (427 °C). We used both the experimentally determined and calculated electron temperatures to estimate the energy relaxation rates of non-equilibrium electrons. In wide InGaN QWs, power loss of an electron is shown to be significantly smaller than that in the narrower QWs. © 2015, The Minerals, Metals & Materials Society and ASM International.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Extraction and scattering analyses of 2D and bulk carriers in epitaxial graphene-on-SiC structure
    (Elsevier BV, 2014-09) Lisesivdin, S. B.; Atmaca, G.; Arslan, E.; Çakmakyapan S.; Kazar, Ö.; Bütün, S.; Ul-Hassan, J.; Janzén, E.; Özbay, Ekmel
    Hall effect measurements of a graphene-on-SiC system were carried out as a function of temperature (1.8-200 K) at a static magnetic field (0.51) With the analysis of temperature dependent single-field Hall data with the Simple Parallel Conduction Extraction Method (SPCEM), bulk and two-dimensional (2D) carrier densities and mobilities were extracted successfully. Bulk carrier is attributed to SIC substrate and 2D carrier is attributed to the graphene layer. For each SPCEM extracted carrier data, relevant three-dimensional or 2D scattering analyses were performed. Each SPCEM extracted carrier data were explained with the related scattering analyses. A temperature independent mobility component, which may related to an interaction between graphene and SIC, was observed for both scattering analyses with the same mobility limiting value. With the SPCEM, effective ionized impurity concentration of SiC substrate, extracted 2D-mobility, and sheet carrier density of the graphene layer are calculated with using temperature dependent static magnetic field Hall data. (c) 2014 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons
    (Elsevier, 2013) Kuloglu, A. F.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    The effects of Palladium (Pd) termination on the electronic properties of armchair graphene nanoribbons (AGNRs) were calculated by using ab initio calculations. After a geometric optimization process, the electronic band structures, density of states, and binding energies of AGNRs with Na = 5-15 were calculated. Pd-termination was found to significantly influence the electronic properties of AGNRs. In DOS, many Q0D and Q1D type states were observed. Binding energy (BE) for single-side or both-side Pd-terminated structures represents characteristic drops with the increasing GNR width. With the increasing GNR width, the BEs of these structures become similar to hydrogenated structures. Because of the GNR width, dependent BE also gave information on the possible stiffness information, in which all of this information can be used in studies where controlled binding to graphene is required.
  • «
  • 1 (current)
  • 2
  • »

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback