Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivations

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physica B: Condensed Matter

Print ISSN

0921-4526

Electronic ISSN

Publisher

Elsevier

Volume

556

Issue

Pages

12 - 16

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
21
downloads

Series

Abstract

In this study, the electronic properties of ZnO nanoribbons with zigzag edges (ZZnONr) have been investigated with Density Functional Theory (DFT). After a geometric optimization, the electronic band structures, the density of states (DOS) of ZZnONr passivated with Hydrogen (H) and Magnesium (Mg) atoms were calculated ZZnONr. It is shown that the increasing width of ZZnONrs has led to a decrement in energy band gap of the studied structures. While ZZnONr passivated with Mg for Zn-rich edge have not been shown a spin dependency, the structure passivated with Mg for O-rich edge have exhibited spin-dependent band structure. The energetically most stable structures have been determined as ZZnONr passivated with Mg for Zn-rich edge. ZZnONr passivated with Mg atoms for both edges have a graphene-like band structure especially for 8 and 10 atom width structures and this property of ZZnONrs could be important in terms of the electron transport for ZZnONrs.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)