A model-based investigation of tool-chip friction during precision micro cutting of commercially pure titanium alloy
buir.contributor.author | Aksin, Alp | |
buir.contributor.author | Karpat, Yiğit | |
buir.contributor.orcid | Aksin, Alp | 0000-0001-9697-8625 | |
buir.contributor.orcid | Karpat, Yiğit |0000-0002-3535-8120 | |
dc.citation.epage | 69 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 57 | en_US |
dc.citation.volumeNumber | 15 | en_US |
dc.contributor.author | Aksin, Alp | |
dc.contributor.author | Karpat, Yiğit | |
dc.date.accessioned | 2023-02-22T08:28:40Z | |
dc.date.available | 2023-02-22T08:28:40Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Understanding interaction between the cutting tool edge radius and the work material is essential to identify the conditions leading to superior surface finish during the micromachining process. The interaction between friction angle and effective rake angle has been investigated based on a slip-line field-based machining model from the literature. Machining forces and cut chip thickness values were obtained from orthogonal cutting tests and employed in the process model. The proposed model also allows for calculating material properties such as shear flow stress and fracture toughness. The proposed model can successfully simulate machining forces during shearing-dominated machining conditions. The results showed the importance of flank and rake face friction in micro-scale machining. | en_US |
dc.description.provenance | Submitted by Mandana Moftakhari (mandana.mir@bilkent.edu.tr) on 2023-02-22T08:28:40Z No. of bitstreams: 1 A_model-based_investigation_of_tool-chip_friction_during_precision_micro_cutting_of_commercially_pure_titanium_alloy.pdf: 2474809 bytes, checksum: 6dc7ffbdddb09c1d92e72cbdfb3ad9b1 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-22T08:28:40Z (GMT). No. of bitstreams: 1 A_model-based_investigation_of_tool-chip_friction_during_precision_micro_cutting_of_commercially_pure_titanium_alloy.pdf: 2474809 bytes, checksum: 6dc7ffbdddb09c1d92e72cbdfb3ad9b1 (MD5) Previous issue date: 2022 | en |
dc.identifier.doi | 10.1504/IJMMS.2022.122905 | en_US |
dc.identifier.eissn | 1753-1047 | |
dc.identifier.issn | 1753-1039 | |
dc.identifier.uri | http://hdl.handle.net/11693/111601 | |
dc.language.iso | English | en_US |
dc.publisher | Inderscience Publishers | en_US |
dc.relation.isversionof | https://doi.org/10.1504/IJMMS.2022.122905 | en_US |
dc.source.title | International Journal of Mechatronics and Manufacturing Systems | en_US |
dc.subject | Micro cutting | en_US |
dc.subject | Edge radius | en_US |
dc.subject | Friction | en_US |
dc.subject | Ductile fracture | en_US |
dc.subject | Machining | en_US |
dc.subject | Slip line field | en_US |
dc.title | A model-based investigation of tool-chip friction during precision micro cutting of commercially pure titanium alloy | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_model-based_investigation_of_tool-chip_friction_during_precision_micro_cutting_of_commercially_pure_titanium_alloy.pdf
- Size:
- 2.36 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: