A model-based investigation of tool-chip friction during precision micro cutting of commercially pure titanium alloy

Date
2022
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
International Journal of Mechatronics and Manufacturing Systems
Print ISSN
1753-1039
Electronic ISSN
1753-1047
Publisher
Inderscience Publishers
Volume
15
Issue
1
Pages
57 - 69
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Understanding interaction between the cutting tool edge radius and the work material is essential to identify the conditions leading to superior surface finish during the micromachining process. The interaction between friction angle and effective rake angle has been investigated based on a slip-line field-based machining model from the literature. Machining forces and cut chip thickness values were obtained from orthogonal cutting tests and employed in the process model. The proposed model also allows for calculating material properties such as shear flow stress and fracture toughness. The proposed model can successfully simulate machining forces during shearing-dominated machining conditions. The results showed the importance of flank and rake face friction in micro-scale machining.

Course
Other identifiers
Book Title
Keywords
Micro cutting, Edge radius, Friction, Ductile fracture, Machining, Slip line field
Citation
Published Version (Please cite this version)