A model-based investigation of tool-chip friction during precision micro cutting of commercially pure titanium alloy

Series

Abstract

Understanding interaction between the cutting tool edge radius and the work material is essential to identify the conditions leading to superior surface finish during the micromachining process. The interaction between friction angle and effective rake angle has been investigated based on a slip-line field-based machining model from the literature. Machining forces and cut chip thickness values were obtained from orthogonal cutting tests and employed in the process model. The proposed model also allows for calculating material properties such as shear flow stress and fracture toughness. The proposed model can successfully simulate machining forces during shearing-dominated machining conditions. The results showed the importance of flank and rake face friction in micro-scale machining.

Source Title

International Journal of Mechatronics and Manufacturing Systems

Publisher

Inderscience Publishers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English