Inertial imaging with nanomechanical systems

dc.citation.epage344en_US
dc.citation.issueNumber4en_US
dc.citation.spage339en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorHanay, M. S.en_US
dc.contributor.authorKelber, S. I.en_US
dc.contributor.authorO'Connell, C. D.en_US
dc.contributor.authorMulvaney, P.en_US
dc.contributor.authorSader, J. E.en_US
dc.contributor.authorRoukes, M. L.en_US
dc.date.accessioned2016-02-08T10:12:56Z
dc.date.available2016-02-08T10:12:56Z
dc.date.issued2015en_US
dc.departmentDepartment of Mechanical Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractMass sensing with nanoelectromechanical systems has advanced significantly during the last decade. With nanoelectromechanical systems sensors it is now possible to carry out ultrasensitive detection of gaseous analytes, to achieve atomic-scale mass resolution and to perform mass spectrometry on single proteins. Here, we demonstrate that the spatial distribution of mass within an individual analyte can be imaged - in real time and at the molecular scale - when it adsorbs onto a nanomechanical resonator. Each single-molecule adsorption event induces discrete, time-correlated perturbations to all modal frequencies of the device. We show that by continuously monitoring a multiplicity of vibrational modes, the spatial moments of mass distribution can be deduced for individual analytes, one-by-one, as they adsorb. We validate this method for inertial imaging, using both experimental measurements of multimode frequency shifts and numerical simulations, to analyse the inertial mass, position of adsorption and the size and shape of individual analytes. Unlike conventional imaging, the minimum analyte size detectable through nanomechanical inertial imaging is not limited by wavelength-dependent diffraction phenomena. Instead, frequency fluctuation processes determine the ultimate attainable resolution. Advanced nanoelectromechanical devices appear capable of resolving molecular-scale analytes.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:12:56Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1038/nnano.2015.32en_US
dc.identifier.issn1748-3387
dc.identifier.urihttp://hdl.handle.net/11693/23370
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nnano.2015.32en_US
dc.source.titleNature Nanotechnologyen_US
dc.subjectGold nanoparticleen_US
dc.subjectSingle walled nanotubeen_US
dc.subjectAdsorptionen_US
dc.subjectAtomic force microscopyen_US
dc.subjectDiffractionen_US
dc.subjectErroren_US
dc.subjectImage processingen_US
dc.subjectImage reconstructionen_US
dc.subjectInertial imagingen_US
dc.subjectMassen_US
dc.subjectMass spectrometryen_US
dc.subjectMeasurementen_US
dc.subjectNanoelectromechanical systemen_US
dc.subjectNanotechnologyen_US
dc.subjectPriority journalen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSignal noise ratioen_US
dc.subjectSimulationen_US
dc.titleInertial imaging with nanomechanical systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Inertial imaging with nanomechanical systems.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description:
Full printable version