Science
Permanent URI for this communityhttps://hdl.handle.net/11693/115484
Browse
Browsing Science by Title
Now showing 1 - 20 of 4547
- Results Per Page
- Sort Options
Item Open Access 1 mJ pulse bursts from a Yb-doped fiber amplifier(Optical Society of America, 2012-07-01) Kalaycıoğlu, Hamit; Eldeniz, Y. B.; Akçalan, Önder; Yavaş, Seydi; Efe, M.; İlday, Fatih ÖmerWe demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier capable of generating 60 μJ pulses within bursts of 11 pulses with extremely uniform energy distribution facilitated by a novel feedback mechanism shaping the seed of the burst-mode amplifier. The burst energy can be scaled up to 1 mJ, comprising 25 pulses with 40 μJ average individual energy. The amplifier is synchronously pulse pumped to minimize amplified spontaneous emission between the bursts. Pulse propagation is entirely in fiber and fiber-integrated components until the grating compressor, which allows for highly robust operation. The burst repetition rate is set to 1 kHz and spacing between individual pulses is 10 ns. The 40 μJ pulses are externally compressible to a full width at half-maximum of 600 fs. However, due to the substantial pedestal of the compressed pulses, the effective pulse duration is longer, estimated to be 1.2 ps.Item Open Access 1.06μm-1.35μm coherent pulse generation by a synchronously-pumped phosphosilicate Raman fiber laser(OSA, 2017) Elahi, Parviz; Makey, Ghaith; Turnalı, Ahmet; Tokel, Onur; İlday, Fatih ÖmerSummary form only given. Rare-earth-doped fiber lasers are attractive for microscopy and imaging applications and have developed over the past decades rapidly. They are unable to cover near-infra-red region entirely and therefore Raman and parametric process are promising for producing new wavelengths which are out of emission band of the current fiber lasers. Here, we demonstrate a synchronously-pumped Raman laser system for producing coherent signals spanning from 1.06 μm to 1.35 μm. The laser system comprises a passively-mode-locked oscillator, two stages of amplifier and a phosphosilicate Raman oscillator. The schematic of experimental setup is shown in Fig. 1(a). A mode locked oscillator operating at 37 MHz is using as a seed source. The output pulse duration and central wavelength are 6 ps and 1065 nm, respectively. 6 mW output from oscillator is launched to pre amplifier comprises 85-cm long Yb 401-PM pumped by a single mode diode through a PM wavelength division multiplexer (WDM). The power amplifier consists of a 3.5-m long Yb 1200-DC-PM with 6 μm core diameter and 125 μm cladding diameter pumped by a temperature stabilized, high power multimode diode laser via a multimode pump-signal combiner (MPC). A 30/70 coupler is employed for delivering pump signal at 1060 nm to the Raman oscillator comprises 4.2-m long ph-doped fiber. To synchronize pump and Raman and achieve coherent pulses, we adjust the length of cavity by a precise translation stage. By using proper filter inside the Raman cavity, different wavelengths are achieved.Item Open Access 1.3 μm GaAs based resonant cavity enhanced Schottky barrier internal photoemission photodetector(IEEE, Piscataway, NJ, United States, 2000) Necmi, B.; Kimukin, I.; Özbay, Ekmel; Tuttle, G.GaAs based photodetectors operating at 1.3 μm that depend on internal photoemission as the absorption mechanism were fabricated. Quantum efficiency (QE) was increased using resonant cavity enhancement (RCE) effect.Item Open Access 1.7-GHz intra-burst repetition rate Yb-fiber amplifier system(IEEE, 2015) Kalaycıoğlu, Hamit; Elahi, Parviz; Kerse, Can; Akçaalan, Önder; İlday, F. ÖmerMaterial processing efficiency of ultrafast pulses increases dramatically with repetition rate of the pulses, if the conditions are adjusted correctly to avoid excessive plasma and particulate shielding. However, given that there is a minimum pulse energy requirement, continuous operation at high repetition rates can be detrimental due to too much average power leading to heat accumulation. Burst-mode operation of lasers, wherein the amplifier periodically produces a group of pulses (a burst), which are very closely spaced in time, avoids this problem. However, ultrafast burst-mode lasers are typically limited to several 100 MHz intra-burst repetition rates. While this is sufficient for most materials, metals with high thermal conductivity require higher repetition rates.Item Open Access 10 W, 10 ns, 50 kHz all-fiber laser at 1.55 µm(Optical Society of America, 2012) Pavlov, Ihor; Dülgergil, E.; İlbey, Emrah; İlday, Fatih ÖmerWe report on an all-fiber, singlemode MOPA system at 1.55 µm producing 10-ns, 200-µJ pulses with 20 kW of peak power and utilize it to micromachine crystalline Si, which is largely transparent at this wavelength.Item Open Access 10 μJ 150 fs all-fiber Yb laser amplifier system(IEEE, 2015) Akçaalan, Önder; Kalaycıoğlu, Hamit; Kesim, Denizhan Koray; İlday, F. ÖmerFemtosecond laser pulse sources have become increasingly popular in the last decade as a result of their practical features, such as insensitivity to environmental variations, versatile designs, high-power outputs. However, much of the progress is with non-integrated specialty fibers, which involve some compromise on these practical features. Monolithic fiber chirped pulse amplification (CPA) systems are very attractive for industrial and scientific applications due to the features such as compactness, reliability and robustness [1].Item Open Access 10-W, 156-MHz all-fiber-integrated Er-Yb-doped fiber laser-amplifier system(Optical Society of America, 2012) Pavlov, Ihor; İlbey, Emrah; Dülgergil, Ebru; İlday, Fatih ÖmerWe demonstrate all-fiber, high-power chirped-pulse-amplifier system, operating at 1550 nm. 156-MHz soliton oscillator seeds a two-stage single-mode amplifier with output power of 10 W. After external compression, pulse duration is 0.6 ps. © 2012 Optical Society of America.Item Open Access 100-GHz resonant cavity enhanced Schottky photodiodes(Institute of Electrical and Electronics Engineers, 1998) Onat, B. M.; Gökkavas, M.; Özbay, Ekmel; Ata, E. P.; Towe, E.; Ünlü, M. S.Resonant cavity enhanced (RCE) photodiodes are promising candidates for applications in optical communications and interconnects where ultrafast high-efficiency detection is desirable. We have designed and fabricated RCE Schottky photodiodes in the (Al, In) GaAs material system for 900-nm wavelength. The observed temporal response with 10-ps pulsewidth was limited by the measurement setup and a conservative estimation of the bandwidth corresponds to more than 100 GHz. A direct comparison of RCE versus conventional detector performance was performed by high speed measurements under optical excitation at resonant wavelength (895 nm) and at 840 nm where the device functions as a single-pass conventional photodiode. A more than two-fold bandwidth enhancement with the RCE detection scheme was demonstrated.Item Open Access 15-Lipoxygenase-1 re-expression in colorectal cancer alters endothelial cell features through enhanced expression of TSP-1 and ICAM-1(Elsevier, 2017-11) Tunçer, S.; Keşküş, A. G.; Çolakoğlu, M.; Çimen, I.; Yener, C.; Konu, Ö.; Banerjee, S.15-lipoxygenase-1 (15-LOX-1) oxygenates linoleic acid to 13(S)-hydroxyoctadecadienoic acid (HODE). The enzyme is widely suppressed in different cancers and its re-expression has tumor suppressive effects. 15-LOX-1 has been shown to inhibit neoangiogenesis in colorectal cancer (CRC); in the present study we confirm this phenomenon and describe the mechanistic basis. We show that re-expression of 15-LOX-1 in CRC cell lines resulted in decreased transcriptional activity of HIF1α and reduced the expression and secretion of VEGF in both normoxic and hypoxic conditions. Conditioned medium (CM) was obtained from CRC or prostate cancer cell lines re-expressing 15-LOX-1 (15-LOX-1CM). 15-LOX-1CM treated aortic rings from 6-week old C57BL/6 mice showed significantly less vessel sprouting and more organized structure of vascular network. Human umbilical vein endothelial cells (HUVECs) incubated with 15-LOX-1CM showed reduced motility, enhanced expression of intercellular cell adhesion molecule (ICAM-1) and reduced tube formation but no change in proliferation or cell-cycle distribution. HUVECs incubated with 13(S)-HODE partially phenocopied the effects of 15-LOX-1CM, i.e., showed reduced motility and enhanced expression of ICAM-1, but did not reduce tube formation, implying the importance of additional factors. Therefore, a Proteome Profiler Angiogenesis Array was carried out, which showed that Thrombospondin-1 (TSP-1), a matrix glycoprotein known to strongly inhibit neovascularization, was expressed significantly more in HUVECs incubated with 15-LOX-1CM. TSP-1 blockage in HUVECs reduced the expression of ICAM-1 and enhanced cell motility, thereby providing a mechanism for reduced angiogenesis. The anti-angiogenic effects of 15-LOX-1 through enhanced expressions of ICAM-1 and TSP-1 are novel findings and should be explored further to develop therapeutic options.Item Open Access 175 fs-long pulses from a high-power single-mode er-doped fiber laser at 1550 nm(Elsevier, 2017) Elahi, P.; Kalaycıoğlu, H.; Li, H.; Akçaalan, Ö.; Ilday, F. Ö.Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.Item Open Access 2 + 1 KdV(N) equations(American Institute of Physics, 2011) Gürses, M.; Pekcan, A.We present some nonlinear partial differential equations in 2 + 1-dimensions derived from the KdV equation and its symmetries. We show that all these equations have the same 3-soliton solution structures. The only difference in these solutions are the dispersion relations. We also show that they possess the Painlevé property. © 2011 American Institute of Physics.Item Open Access (2 + 1)-dimensional AKNS(−N) systems II(Elsevier BV, 2021-06) Gürses, Metin; Pekcan, AslıIn our previous work (Gürses and Pekcan, 2019, [40]) we started to investigate negative AKNS(−N) hierarchy in (2 + 1)-dimensions. We were able to obtain only the first three, N = 0, 1, 2, members of this hierarchy. The main difficulty was the nonexistence of the Hirota formulation of the AKNS(N) hierarchy for N ≥ 3. Here in this work we overcome this difficulty for N = 3, 4 and obtain Hirota bilinear forms of (2 + 1)-dimensional AKNS(−N) equations for these members. We study the local and nonlocal reductions of these systems of equations and obtain several new integrable local and nonlocal equations in (2 + 1)- dimensions. We also give one-, two-, and three-soliton solutions of the reduced equationsItem Open Access (2+1)-dimensional local and nonlocal reductions of the negative AKNS system: soliton solutions(Elsevier, 2018) Gürses, Metin; Pekcan, A.Wefirstconstructa(2+1)dimensionalnegativeAKNShierarchyandthenwegiveallpossiblelocaland(discrete)nonlocalreductionsoftheseequations.WefindHirotabilinearformsofthenegativeAKNShierarchyandgiveone-andtwo-solitonsolutions.ByusingthesolitonsolutionsofthenegativeAKNShierarchywefindone-solitonsolutionsofthelocalandnonlocalreducedequations.Item Open Access [2+2] cycloadditions of sorbyl tosylate with imines/1-azadienes: a one-pot domino approach for α-alkylidene-β-lactams and their computational studies and antimicrobial evaluation(Wiley-Blackwell, 2018) Kumar, Y.; Bedi, P. M. S.; Singh, P.; Adeniyi, A. A.; Singh-Pillay, A.; Singh, P.; Bhargava, G.The manuscript describes a straightforward and atom-efficient method for the synthesis of α-alkylidene-β-lactams using sorbyl tosylate and imines/1-azadienes at high temperature (80 °C). The Density functional theory calculations have shown the prevalence of the first order kinetics in these [2+2] cycloadditions to produce mixture of 3-butadienyl-azetidin-2ones and 3-but-2-enylidene-azetidin-2-ones in good yields. The 3-but-2-enylidene-azetidin-2-ones have also shown antimicrobial activity against the E. coli, S. aureus, P. aeruginosa, B. cereus and B. subtilis.Item Open Access 2-Killing vector fields on warped product manifolds(World Scientific Publishing, 2015) Shenawy, S.; Ünal, B.This paper provides a study of 2-Killing vector fields on warped product manifolds as well as characterization of this structure on standard static and generalized Robertson-Walker space-times. Some conditions for a 2-Killing vector field on a warped product manifold to be parallel are obtained. Moreover, some results on the curvature of a warped product manifolds in terms of 2-Killing vector fields are derived. Finally, we apply our results to describe 2-Killing vector fields of some well-known warped product space-time models. © 2015 World Scientific Publishing Company.Item Open Access 20-fs 1.6-mJ pulses from a cw-diode-pumped single-stage 1-kHz Yb amplifier(OSA, 2010) Andriukaitis, G.; Kartashov, D.; Pugzlys, A.; Lorenc, D.; Baltuska, A.; Giniunas, L.; Danielius, R.; İlday, Ömer Fatih200-fs 2.5-mJ pulses from a fiber-oscillator-seeded DPSS Yb:CaF2 MOPA are spectrally broadened in Ar and recompressed to 20 fs using a pair of LAK14 prisms. Multi-millijoule 12-fs pulses are feasible upon higher-order spectral phase correction.Item Open Access 2012 William allan award introduction: Uta Francke(Elsevier, 2013-03-07) Özçelik, T.Item Open Access 2D material liquid crystals for optoelectronics and photonics(Royal Society of Chemistry, 2017) Hogan, Ben T.; Kovalska, Evgeniya; Craciun, Monica F.; Baldycheva, AnnaThe merging of the materials science paradigms of liquid crystals and 2D materials promises superb new opportunities for the advancement of the fields of optoelectronics and photonics. In this review, we summarise the development of 2D material liquid crystals by two different methods: dispersion of 2D materials in a liquid crystalline host and the liquid crystal phase arising from dispersions of 2D material flakes in organic solvents. The properties of liquid crystal phases that make them attractive for optoelectronics and photonics applications are discussed. The processing of 2D materials to allow for the development of 2D material liquid crystals is also considered. An emphasis is placed on the applications of such materials; from the development of films, fibers and membranes to display applications, optoelectronic devices and quality control of synthetic processes. © 2017 The Royal Society of Chemistry.Item Open Access 2D Network overtakes 3D for photocatalytic hydrogen evolution(Royal Society of Chemistry, 2022-07-18) Ahmad, Aliyu Aremu; Türkan Gamze Ulusoy, Ghobadi; Özbay, Ekmel; Karadaş, Ferdi3-Dimensional (3D) cyanide coordination polymers, typically known as Prussian blue Analogues (PBAs), have received great attention in catalysis due to their stability, easily tuned metal sites, and porosity. However, their high crystallinities and relatively low number of surface-active sites significantly hamper their intrinsic catalytic activities. Herein, we report the utilization of a 2-dimensional (2D) layered cobalt tetracyanonickelate, [Co–Ni], for the reduction of protons to H2. Relying on its exposed facets, layered morphology, and abundant surface-active sites, [Co–Ni] can efficiently convert water and sunlight to H2 in the presence of a ruthenium photosensitizer (Ru PS) with an optimal evolution rate of 30 029 ± 590 μmol g−1 h−1, greatly exceeding that of 3D Co–Fe PBA [Co–Fe] and Co–Co PBA [Co–Co]. Furthermore, [Co–Ni] retains its structural integrity throughout a 6 hour photocatalytic cycle, which is confirmed by XPS, PXRD, and Infrared analysis. This recent work reveals the excellent morphologic properties that promote [Co–Ni] as an attractive catalyst for the hydrogen evolution reaction (HER).Item Open Access 3-Propionyl-thiazolidine-4-carboxylic acid ethyl esters: A family of antiproliferative thiazolidines(Royal Society of Chemistry, 2015) Önen-Bayram F.E.; Buran, K.; Durmaz I.; Berk, B.; Cetin-Atalay, R.Cancer results from unregulated cell growth. Reactivating the process of the programmed cell death, i.e. apoptosis, is a classical anticancer therapeutic strategy. The apoptosis-inducing property of the (2RS,4R)-2-phenyl-3-propionyl-thiazolidine-4-carboxylic acid ethyl ester (ALC 67) molecule has recently been discovered. We analyzed in this study the impact of the phenyl moiety of this molecule on its biological activity by synthesizing and evaluating analogues where this substituent was replaced by a series of aromatic and aliphatic groups. The results demonstrated that the molecule's antiproliferative property resisted such modifications. Thus, in addition to developing a family of thiazolidine compounds with promising anticancer properties; our investigation revealed that the second position of the thiazolidine ring can be used either to tune the physicochemical properties of ALC67 or to introduce a fluorescent tag to the structure in order to track it in cells and determine its exact molecular mechanism of action. © 2015 The Royal Society of Chemistry.