Browsing by Subject "Vibrations (mechanical)"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Dynamic boundary control of the timoshenko beam(Pergamon Press, 1992) Morgül, Ö.We consider a clamped-free Timoshenko beam. To stabilize the beam vibrations, we propose a dynamic boundary control law applied at the free end of the beam. We prove that with the proposed control law, the beam vibrations uniformly and exponentially decay to zero. The proof uses a Lyapunov functional based on the energy of the system. © 1992.Item Open Access Harmonic cantilevers for nanomechanical sensing of elastic properties(IEEE, 2003-06) Şahin, O.; Yaralıoğlu, G.; Grow, R.; Zappe, S. F.; Atalar, Abdullah; Quate, C.; Solgaard, O.We present a micromachined scanning probe cantilever, in which a specific higher order flexural mode is designed to be resonant at an exact integer multiple of the fundamental resonance frequency. We have demonstrated that such cantilevers enable sensing of nonlinear mechanical interactions between the atomically sharp tip at the free end of the cantilever and a surface with unknown mechanical properties in tapping-mode atomic force microscopy.Item Open Access Nanomechanics using an ultra-small amplitude AFM(Cambridge University Press, 2001) Hoffmann, P. M.; Jeffery, S.; Oral, Ahmet; Grimble, R. A.; Özer, H. Özgür; Pethica, J. B.A new type of AFM is presented which allows for direct measurements of nanomechanical properties in ultra-high vacuum and liquid environments. The AFM is also capable to atomic-scale imaging of force gradients. This is achieved by vibrating a stiff lever at very small amplitudes of less than 1 Å (peak-to-peak) at a sub-resonance amplitude. This linearizes the measurement and makes the interpretation of the data straight-forward. At the atomic scale, interaction force gradients are measured which are consistent with the observation of single atomic bonds. Also, atomic scale damping is observed which rapidly rises with the tip-sample separation. A mechanism is proposed to explain this damping in terms of atomic relaxation in the tip. We also present recent results in water where we were able to measure the mechanical response due to the molecular ordering of water close to an atomically flat surface.Item Open Access A new detection method for capacitive micromachine ultrasonic transducers(IEEE, 2001) Ergun, A. S.; Temelkuran, B.; Özbay, Ekmel; Atalar, AbdullahCapacitive micromachine ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They consist of many small circular membranes that are connected in parallel. In this work, we report a new detection method for cMUTs. We model the membranes as capacitors and the interconnections between the membranes as inductors. This kind of LC network is called an artificial transmission line. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the frequency of the signal through it. By measuring the electrical length of the artificial line at a high RF frequency (in the gigahertz range), the vibrations of the membranes can be detected in a very sensitive manner. For the devices we measured, we calculated the minimum detectable displacement to be in the order of 10 -5 Å/√Hz with a possible improvement to 10 -7 Å/√Hz.Item Open Access A new detection method for capacitive micromachined ultrasonic transducers(IEEE, 1998) Ergun, A. S.; Temelkuran, B.; Özbay, Ekmel; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They usually consist of many small membranes all in parallel. In this work we report a new detection method for cMUT's. We arrange the membranes in the form of an artificial transmission line by inserting small inductances between the membranes. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the total capacitance and the frequency of the signal through it. By measuring the electrical length of the artificial line at a RF frequency in the GHz range, the vibrations of the membranes can be detected in a very sensitive manner. For the detector structure we considered a minimum detectable displacement in the order of 10-7 angstroms/√Hz is expected.