Browsing by Subject "Ultrasonic measurement"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements(Institute of Physics Publishing, 2000) Barshan, B.; Backent, D.Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing exploits neighbouring relationships between the pixels of the generated arc map. On the other hand, spatial voting relies on the number of votes accumulated in each pixel and ignores neighbouring relationships. Both approaches are extremely flexible and robust, in addition to being simple and straightforward. They can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays. The methods have the intrinsic ability to suppress spurious readings, crosstalk and higher-order reflections, and process multiple reflections informatively. The performances of the two methods are compared on various examples involving both simulated and experimental data. The morphological processing method outperforms the spatial voting method in most cases with errors reduced by up to 80%. The effect of varying the measurement noise and surface roughness is also considered. Morphological processing is observed to be superior to spatial voting under these conditions as well.Item Open Access Experimental characterization of capacitive micromachined ultrasonic transducers(IEEE, 2007) Ölçüm, Selim; Atalar, Abdullah; Köymen, Hayrettin; Oğuz, Kağan; Şenlik, Muhammed N.In this paper, capacitive micromachined ultrasonic transducers are fabricated using a sacrificial surface micromachining process. A testing procedure has been established in order to measure the absolute transmit and receive sensitivity spectra of the fabricated devices. The experiments are performed in oil. Pulse-echo experiments are performed and the results are compared to the pitch-catch measurements using calibrated transducers.Item Open Access Fast processing techniques for accurate ultrasonic range measurements(Institute of Physics Publishing, 2000) Barshan, B.Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.Item Open Access A new detection method for capacitive micromachined ultrasonic transducers(IEEE, 1998) Ergun, A. S.; Temelkuran, B.; Özbay, Ekmel; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (cMUT) have become an alternative to piezoelectric transducers in the past few years. They usually consist of many small membranes all in parallel. In this work we report a new detection method for cMUT's. We arrange the membranes in the form of an artificial transmission line by inserting small inductances between the membranes. The vibrations of the membranes modulate the electrical length of the transmission line, which is proportional to the total capacitance and the frequency of the signal through it. By measuring the electrical length of the artificial line at a RF frequency in the GHz range, the vibrations of the membranes can be detected in a very sensitive manner. For the detector structure we considered a minimum detectable displacement in the order of 10-7 angstroms/√Hz is expected.Item Open Access Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers(IEEE, 2010) Senlik, M. N.; Olcum, S.; Köymen, Hayrettin; Atalar, AbdullahThe radiation impedance of a capacitive micromachined ultrasonic transducer (cMUT) with a circular membrane is calculated analytically using its velocity profile for the frequencies up to its parallel resonance frequency for both the immersion and the airborne applications. The results are verified by finite element simulations. The work is extended to calculate the radiation impedance of an array of cMUT cells positioned in a hexagonal pattern. A higher radiation resistance improves the bandwidth as well as the efficiency of the cMUT. The radiation resistance is determined to be a strong function of the cell spacing. It is shown that a center-to-center cell spacing of 1.25 wavelengths maximizes the radiation resistance, if the membranes are not too thin. It is also found that excitation of nonsymmetric modes may reduce the radiation resistance in immersion applications.Item Open Access Ultrasonic surface profile determination by spatial voting(IEEE, 2001) Barshan, BillurA novel spatial voting scheme is described for surface profile determination based on multiple ultrasonic range measurements. Spatial voting relies on the number of votes accumulated in each pixel of the ultrasonic arc map but ignores neighboring relationships. This approach is extremely robust, flexible, and straightforward. It can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays, with the intrinsic ability to suppress spurious readings, crosstalk, and higher-order reflections, and process multiple reflections informatively. The performance of the method is investigated on various examples involving both simulated and experimental data. The effect of varying the surface roughness is also considered.Item Open Access Wafer bonded capacitive micromachined underwater transducers(IEEE, 2009-09) Olcum, Selim; Oǧuz, Kaan; Şenlik, Muhammed N.; Yamaner F. Y.; Bozkurt, A.; Atalar, Abdullah; Köymen, HayrettinIn this work we have designed, fabricated and tested CMUTs as underwater transducers. Single CMUT membranes with three different radii and 380 microns of thickness are fabricated for the demonstration of an underwater CMUT element. The active area of the transducer is fabricated on top of a 3″ silicon wafer. The silicon wafer is bonded to a gold electrode coated glass substrate wafer 10 cm in diameter. Thermally grown silicon oxide layer is used as the insulation layer between membrane and substrate electrodes. Electrical contacts and insulation are made by epoxy layers. Single CMUT elements are tested in air and in water. Approximately 40% bandwidth is achieved around 25 KHz with a single underwater CMUT cell. Radiated pressure field due to second harmonic generation when the CMUTs are driven with high sinusoidal voltages is measured. ©2009 IEEE.