Browsing by Subject "Time-resolved photoluminescence"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access CdSe/CdMnS nanoplatelets with bilayer core and magnetically doped shell exhibit switchable excitonic circular polarization: Implications for lasers and light-emitting diodes(American Chemical Society, 2020-03) Najafi, A.; Tarasek, S.; Delikanlı, Savaş; Zhang, P.; Norden, T.; Shendre, S.; Sharma, Manoj; Bhattacharya, A.; Taghipour, Nima; Pientka, J.; Dedmir, Hilmi Volkan; Thomay, T.We utilized time-resolved photoluminescence (TRPL) spectroscopy to study the excitonic circular polarization (PX) from CdSe/CdMnS core/shell nanoplatelets (NPLs) with a bilayer core. This allows an extensive study of the emission dynamics as a function of magnetic field, temperature, doping concentration, and excitation wavelength. In the presence of an external magnetic field, pulsed excitation below the shell gap results in near-zero excitonic circular polarization PX at all time delays. In contrast, pulsed excitation with photon energy larger than the shell gap results in a rapid (100 ps) buildup of the excitonic circular polarization which subsequently remains constant at a level of up to 40%. We propose a model to describe the dynamics which takes into account the exchange interaction between carrier and magnetic ion (Mn) spins. The studied system exhibits a fast switchable excitonic circular polarization, implying possible applications in lasers and light emitting diodes.Item Open Access Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields(American Institute of Physics, 2009-05-29) Sari, E.; Nizamoglu, S.; Lee, I. H.; Baek, J. H.; Demir, Hilmi VolkanElectric field dependent photoluminescence decay kinetics and its radiative component are studied in polar InGaN/GaN quantum heterostructures at low fields. Under externally applied electric field lower than polarization fields, spectrally and time resolved photoluminescence measurements are taken to retrieve internal quantum efficiencies and carrier lifetimes as a function of the applied field. Subsequently, relative behavior of radiative recombination lifetimes is obtained in response to the applied field. In these characterizations of polar InGaN/GaN structures, we observe that both the carrier lifetime and the radiative recombination lifetime decrease with increasing external electric field, with the radiative component exhibiting weaker field dependence.Item Open Access Enhanced optical characteristics of light emitting diodes by surface plasmon of Ag nanostructures(SPIE, 2011) Jang L.-W.; Ju J.-W.; Jeon J.-W.; Jeon, D.-W.; Choi J.-H.; Lee, S.-J.; Jeon, S.-R.; Baek J.-H.; Sarı, Emre; Demir, Hilmi Volkan; Yoon H.-D.; Hwang, S.-M.; Lee I.-H.We investigated the surface plasmon coupling behavior in InGaN/GaN multiple quantum wells at 460 nm by employing Ag nanostructures on the top of a roughened p-type GaN. After the growth of a blue light emitting diode structure, the p-GaN layer was roughened by inductive coupled plasma etching and the Ag nanostructures were formed on it. This structure showed a drastic enhancement in photoluminescence and electroluminescence intensity and the degree of enhancement was found to depend on the morphology of Ag nanostructures. From the time-resolved photoluminescence measurement a faster decay rate for the Ag-coated structure was observed. The calculated Purcell enhancement factor indicated that the improved luminescence intensity was attributed to the energy transfer from electron-hole pair recombination in the quantum well to electron vibrations of surface plasmon at the Ag-coated surface of the roughened p-GaN. © 2011 SPIE.Item Open Access Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution(American Institute of Physics, 2009-07-20) Mutlugün, E.; Nizamoğlu, S.; Demir, Hilmi VolkanWe propose and demonstrate highly efficient nonradiative Förster resonance energy transfer (FRET) facilitated by the use of positively charged CdSe/ZnS core-shell nanocrystals (NCs) for light-harvesting in solution. With rhodamine B dye molecules used as the acceptors, our time-resolved photoluminescence measurements show substantial lifetime modifications of these amine-functionalized NC donors from 18.16 to 1.88 ns with FRET efficiencies >90% in solution. These strong modifications allow for light-harvesting beyond the absorption spectral range of the acceptor dye molecules.Item Open Access Lateral overgrowth of germanium for monolithic integration of germanium-on-insulator on silicon(Elsevier, 2015) Hyung Nam J.; Alkis, S.; Nam, D.; Afshinmanesh F.; Shim J.; Park, J.; Brongersma, M.; Okyay, Ali Kemal; Kamins, T.I.; Saraswat, K.A technique to locally grow germanium-on-insulator (GOI) structure on silicon (Si) platform is studied. On (001) Si wafer, silicon dioxide (SiO2) is thermally grown and patterned to define growth window for germanium (Ge). Crystalline Ge is grown via selective hetero-epitaxy, using SiO2 as growth mask. Lateral overgrowth of Ge crystal covers SiO2 surface and neighboring Ge crystals coalesce with each other. Therefore, single crystalline Ge sitting on insulator for GOI applications is achieved. Chemical mechanical polishing (CMP) is performed to planarize the GOI surface. Transmission electron microscopy (TEM) analysis, Raman spectroscopy, and time-resolved photoluminescence (TRPL) show high quality crystalline Ge sitting on SiO2. Optical response from metal-semiconductor-metal (MSM) photodetector shows good optical absorption at 850 nm and 1550 nm wavelength. © 2015 Elsevier B.V. All rights reserved.Item Open Access Nonradiative recombination-Critical in choosing quantum well number for InGaN/GaN light-emitting diodes(Optical Society of American (OSA), 2015) Zhang, Y.P.; Zhang, Z.-H.; Liu W.; Tan, S.T.; Ju, Z.G.; Zhang X.L.; Ji, Y.; Wang L.C.; Kyaw, Z.; Hasanov, N.; Zhu, B.B.; Lu, S.P.; Sun X.W.; Demir, Hilmi VolkanIn this work, InGaN/GaN light-emitting diodes (LEDs) possessing varied quantum well (QW) numbers were systematically investigated both numerically and experimentally. The numerical computations show that with the increased QW number, a reduced electron leakage can be achieved and hence the efficiency droop can be reduced when a constant Shockley-Read-Hall (SRH) nonradiative recombination lifetime is used for all the samples. However, the experimental results indicate that, though the efficiency droop is suppressed, the LED optical power is first improved and then degraded with the increasing QW number. The analysis of the measured external quantum efficiency (EQE) with the increasing current revealed that an increasingly dominant SRH nonradiative recombination is induced with more epitaxial QWs, which can be related to the defect generation due to the strain relaxation, especially when the effective thickness exceeds the critical thickness. These observations were further supported by the carrier lifetime measurement using a pico-second time-resolved photoluminescence (TRPL) system, which allowed for a revised numerical modeling with the different SRH lifetimes considered. This work provides useful guidelines on choosing the critical QW number when designing LED structures. © 2014 Optical Society of America.Item Open Access Polar vs. nonpolar InGaN/GaN quantum heterostructures: Opposite quantum confined electroabsorption and carrier dynamics behavior(IEEE, 2010) Sarı, Emre; Nizamoğlu, Sedat; Choi J.H.; Lee, S.J.; Baik, K.H.; Lee I.H.; Baek J.H.; Hwang, S.-M.; Demir, Hilmi VolkanWe present a study of quantum confined electroabsorption and carrier dynamics in polar c-plane and nonpolar a-plane InGaN/GaN quantum heterostructures. We demonstrate red-shifting absorption edge, due to quantum confined Stark effect, in nonpolar InGaN/GaN quantum structures in response to increased electric field, while we show the opposite effect with blue-shifting absorption spectra in polar quantum structures. Moreover, confirmed by time-resolved photoluminescence measurements, we prove that carrier lifetimes increase with increasing electric field for nonpolar structures, whereas the opposite occurs for polar ones.Item Open Access Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets(SPIE, 2017) Murphy, J. R.; Delikanlı, Savaş; Zhang, T.; Scrace, T. A.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Himli Volkan; Petrou, A.Colloidal semiconductor nanoplatelets (NPLs) are quasi 2D-nanostructures that are grown and processed inexpensively using a solution based method and thus have recently attracted considerable attention. We observe two features in the photoluminescence spectrum, suggesting two possible recombination channels. Their intensity ratio varies with temperature and two distinct temperature regions are identified; a low temperature region (10K < T < 90K) and a high temperature region (90K < T < 200K). This ratio increases with increasing temperature, suggesting that one recombination channel involves holes that are weakly localized with a localization energy of 0.043meV. A possible origin of these localized states are energy-variations in the xy-plane of the nanoplatelet. The presence of positive photoluminescence circular polarization in the magnetically-doped core/multi-shell NPLs indicates a hole-dopant exchange interaction and therefore the incorporated magnetic Manganese ions act as a marker that determines the location of the localized hole states.1 Time-resolved measurements show two distinct timescales (τfast and τslow) that can be modeled using a rate equation model. We identify these timescales as closely related to the corresponding recombination times for the channels. The stronger hole localization of one of these channels leads to a decreased electron-hole wave function overlap and thus a decreased oscillator strength and an increased lifetime. We show that we can model and understand the magnetic interaction of doped 2D-colloidal nanoplatelets which opens a pathway to solution processable spin controllable light sources. Copyright © 2017 SPIE.Item Open Access Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets(American Institute of Physics Inc., 2016) Murphy, J. R.; Delikanli S.; Scrace, T.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Hilmi Volkan; Petrou, A.We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.