Browsing by Subject "Resonant cavity enhancement"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access 1.3 μm GaAs based resonant cavity enhanced Schottky barrier internal photoemission photodetector(IEEE, Piscataway, NJ, United States, 2000) Necmi, B.; Kimukin, I.; Özbay, Ekmel; Tuttle, G.GaAs based photodetectors operating at 1.3 μm that depend on internal photoemission as the absorption mechanism were fabricated. Quantum efficiency (QE) was increased using resonant cavity enhancement (RCE) effect.Item Open Access 100-GHz resonant cavity enhanced Schottky photodiodes(Institute of Electrical and Electronics Engineers, 1998) Onat, B. M.; Gökkavas, M.; Özbay, Ekmel; Ata, E. P.; Towe, E.; Ünlü, M. S.Resonant cavity enhanced (RCE) photodiodes are promising candidates for applications in optical communications and interconnects where ultrafast high-efficiency detection is desirable. We have designed and fabricated RCE Schottky photodiodes in the (Al, In) GaAs material system for 900-nm wavelength. The observed temporal response with 10-ps pulsewidth was limited by the measurement setup and a conservative estimation of the bandwidth corresponds to more than 100 GHz. A direct comparison of RCE versus conventional detector performance was performed by high speed measurements under optical excitation at resonant wavelength (895 nm) and at 840 nm where the device functions as a single-pass conventional photodiode. A more than two-fold bandwidth enhancement with the RCE detection scheme was demonstrated.Item Open Access Design, fabrication and characterization of high performance resonant cavity enhanced photodetectors(1998) Bıyıklı, NecmiPhotodetectors are essential components of optoelectronic integrated circuits and fiber optic communication systems. For higher system performances, photoreceivers with high bandwidth-efficiency products are needed. A new family of photodetectors introduced in the early 90's offers high performance detection along with wavelength selectivity: resonant cavity enhanced (RCE) photodetectors. In this thesis, we present our efforts for the design, fabrication and characterization of AlGaAs/GaAs-based Schottky and p-i-n type RCE photodiodes operating within the first optical communication window. Epitaxial wafers are designed using scattering matrix method based simulations and grown with molecular beam epitaxy. Schottky photodiode was primarily designed for high-speed operation, where as in p-i-n structure we aim to achieve near unity quantum efficiency. Measurement results show reasonable agreement our theoretical simulations. Fabricated Schottky and p-i-n RCE photodiode samples demonstrated high bandwidth-efficiency products, 36 and 46 GHz respectively. These results indicate the best performances for RCE Schottky and p-i-n photodiodes reported in scientific literature.Item Open Access High-speed high-efficiency resonant cavity enhanced photodiodes(Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States, 1999) Özbay, Ekmel; Kimukin, I.; Bıyıklı, N.; Aytür, O.; Gökkavas, M.; Ulu, G.; Ünlü, M. S.; Mirin, R. P.; Bertness, K. A.; Christensen, D. H.; Towe, E.; Tuttle, G.In this paper, we review our research efforts on RCE high-speed high-efficiency p-i-n and Schottky photodiodes. Using a microwave compatible planar fabrication process, we have designed and fabricated GaAs based RCE photodiodes. For RCE Schottky photodiodes, we have achieved a peak quantum efficiency of 50% along with a 3-dB bandwidth of 100 GHz. The tunability of the detectors via a recess etch is also demonstrated. For p-i-n type photodiodes, we have fabricated and tested widely tunable devices with near 100% quantum efficiencies, along with a 3-dB bandwidth of 50 GHz. Both of these results correspond to the fastest RCE photodetectors published in scientific literature.Item Open Access Ultrafast and highly efficient resonant cavity enhanced photodiodes(SPIE, 2003-09) Özbay, Ekmel; Kimukin, İbrahim; Bıyıklı, NecmiIn this talk, we will review our research efforts on resonant cavity enhanced (RCE) high-speed high-efficiency photodiodes (PDs) operating in the 1st and 3rd optical communication windows. Using a microwave compatible planar fabrication process, we have designed and fabricated GaAs and InGaAs based RCE photodiodes. For RCE GaAs Schottky type photodiodes, we have achieved peak quantum efficiencies of 50% and 75% with semi-transparent (Au) and transparent (indium-tin-oxide) Schottky layers respectively. Along with 3-dB bandwidths of 50 and 60 GHz, these devices exhibit bandwidth-efficiency (BWE) products of 25 GHz and 45 GHz respectively. By using a postprocess recess etch, we tuned the resonance wavelength of an RCE InGaAs PD from 1605 to 1558 nm while keeping the peak efficiencies above 60%. The maximum quantum efficiency was 66% at 1572 nm which was in good agreement with our theoretical calculations. The photodiode had a linear response up to 6 mW optical power, where we obtained 5 mA photocurrent at 3 V reverse bias. The photodetector had a temporal response of 16 psec at 7 V bias. After system response deconvolution, the 3-dB bandwidth of the device was 31 GHz, which corresponds to a bandwidth-efficiency product of 20 GHz.Item Open Access Widely tunable resonant cavity enhanced detectors built around photonic crystals(Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States, 1999) Temelkuran, B.; Özbay, EkmelWe report a resonant cavity enhanced (RCE) detector built around a three-dimensional photonic band gap crystal. We have demonstrated the resonant cavity enhanced (RCE) effect by placing microwave detectors in defect structures built around dielectric and metallic based photonic crystals. We measured a power enhancement factor of 3450 for planar cavity structures built around dielectric based photonic crystals. The tuning bandwidth of the RCE detector extends from 10.5 to 12.8 GHz. We also demonstrated the RCE effect in cavities built around metallic structures. The power enhancement for the EM wave within these defect structures were measured to be around 190. These measurements show that detectors embedded inside photonic crystals can be used as frequency selective RCE detectors with increased sensitivity and efficiency when compared to conventional detectors.