Browsing by Subject "Radiation impedance"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access Analysis of mutual acoustic coupling in CMUT arrays using an accurate lumped element nonlinear equivalent circuit model(2012) Oğuz, H.Kağan; Atalar, Abdullah; Köymen, HayrettinWe use an accurate nonlinear equivalent circuit model to analyze CMUT arrays with multiple cells, where every cell in the array is coupled to other cells at their acoustic terminals through a mutual radiation impedance matrix. We get results comparable to finite element analysis accuracy. Hence, the analysis of a large array becomes a circuit theory problem and can be scrutinized with circuit simulators. We study the mutual acoustic interactions that arise through the immersion medium due to the influence of the generated pressure field by each cell on the others. We compare the performance of different 1D cMUT arrays, where each element is half-wavelength wide and 10 and 20 wavelengths long at the resonance frequency of a single cell. © 2012 IEEE.Item Open Access Designing, fabrication and post- fabrication characterization of half-frequency driven 16 x 16 waterborne transmit CMUT array(2021-02) Abhoo, Yusuph AbubakarCapacitive Micromachined Ultrasonic Transducers (CMUT) are micro-scaled electromechanical devices which are used to either transmit or receive pressure signals and applicable for various purposes such as ultrasonic sensor, medical imaging, accurate biometric sensing and parametric speakers. For transmitting CMUT transducer, different sizes and array configurations are used to intensify the transmission power depending on the application. The half-frequency driven waterborne transmitting CMUT array designed in this work is to be used for high resolution volumetric medical imaging purpose. This was accomplished by a design which prioritizes maximizing the power output, achieving a directive radiation pattern with low sidelobes which maximizes the beamformable region. In this work, the issues with steering of the focused beam are also resolved to achieve a focused steerable beam. This work is an advancement from the earlier designed half-frequency driven airborne transmit CMUT to improve power output, introduce the beamforming and focused transmission capabilities and be applicable for high resolution volumetric medical imaging purpose. To improve the power output, the design was made to compensate for the static depression. Compensating for static depression was achieved by designing to operate the CMUT without DC bias voltage which allows for full-gap swing and giving output signal of twice the input frequency. This property allows the cell to produce high power output with low voltage levels but also brings the advantage of operating the cell with very high voltages without collapsing. The CMUT was chosen to be operating at 7.5 MHz and be driven by Digital Phased Array System (DiPhAS) which allowed to have maximum of 256 channels which for volumetric transmission meant a maximum of 16 x 16 array. Since the radiation pattern and Rayleigh distance are both the functions of radius, frequency and the pitch, the design optimization was found while considering all the above preferences simultaneously. The cells’ radii were determined to be 80 µm, the plate thickness was 15 µm, the gap height was found to be 117 nm and the pitch was 192 µm. The array designing was carried out using the large-signal equivalent circuit model and the radiation impedance matrix phenomenon. The simulations showed that with this design, the maximized Rayleigh distance was 45.3 mm and the sidelobe of -17.4 dB. In simulations, very high pressure outputs were achievable with individual cells up to 425 kPa per cell with 150 VPP input while up to 1.5 MPa was emitted by the array plane wave transmission with only 10 VPP input and almost doubles when the transmitted beam was focused at zero degrees. Fabrication was done by the wafer boding and flip-chip bonding techniques where the whole process required only two lithography masks. After fabrication, the tests were performed to identify the yield of the transducer was 18.75% of the array then impedance analysis was done to characterize the functional cells and resonance frequency drift. The transducer was cased in a water-tight manner and the waterborne transmission were done with individual cells to characterize and compare the performance with the design simulations which were in the range of agreement achieving an average of 1625 Pa per cell. The functional cells were then used for plane wave transmission with 10 VPP and the output pressure of 397 kPa was achieved at resonance frequency. The measurement results showed that the design could further be improved by compensating the active area to improve the yield for better results and be able to use it for high resolution 3D medical imaging.Item Open Access Equivalent circuit-based analysis of CMUT cell dynamics in arrays(IEEE, 2013) Oğuz, H. K.; Atalar, Abdullah; Köymen, HayrettinCapacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.Item Open Access High Power CMUTs: design and experimental verification(IEEE, 2012) Yamaner, F. Y.; Olcum, S.; Oguz, H. K.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with −28 dBc second harmonic at the surface of the array.Item Open Access Lumped element modeling of CMUT arrays in collapsed mode(IEEE, 2014-09) Aydoğdu, Elif; Özgürlük, A.; Atalar, Abdullah; Köymen, HayrettinThis study focuses on modeling collapsed modeoperation of CMUT arrays, and obtaining a small signal lumped element model for collapsed mode operation. Having the large signal model for single CMUT from previous studies, the mutual radiation impedance is presented for the collapsed mode, and a large signal model for a CMUT array is obtained for simulating the operation in both uncollapsed and collapsed modes. For faster computation, a small signal model for a CMUT cell is derived by linearizing the collapsed mode operation at a given bias point, and the computation time is reduced significantly. Using this model we are able to simulate a large array of collapsed CMUT cells. © 2014 IEEE.Item Open Access Nonlinear equivalent circuit model for circular CMUTs in uncollapsed and collapsed mode(IEEE, 2012) Aydoğdu, Elif; Özgürlük, Alper; Oğuz, H. Kağan; Atalar, Abdullah; Kocabaş, Coşkun; Köymen, HayrettinAn equivalent electrical circuit model valid for collapsed mode operation of CMUT is described. The across and through variables of the circuit model are chosen to be rms force and rms displacement over the surface of the CMUT membrane. The relation between rms displacement and applied voltage is obtained through analytical calculations utilizing the exact force distribution. The radiation impedance of collapsed mode CMUT is included as a load impedance in the circuit model. The resulting equivalent circuit is merged with uncollapsed mode model, to obtain a simulation tool that covers the whole operation range of CMUT. © 2012 IEEE.Item Open Access Optimizing CMUT geometry for high power(IEEE, 2010) Yamaner F.Y.; Olcum, Selim; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have demonstratedvarious advantages over piezoelectric transducers. However, current CMUT designsproduce low output pressures with high harmonic distortions. Optimizing thetransducer parameters requires an iterative solution and is too time consumingusing finite element (FEM) modelling tools. In this work, we present a method ofdesigning high output pressure CMUTs with relatively low distortion. We analyzethe behavior of a membrane under high voltage continuous wave operation using anonlinear electrical circuit model. The radiation impedance of an array ofCMUTs is accurately represented using an RLC circuit in the model. The maximummembrane swing without collapse is targeted in the transmit mode. Using SPICEsimulation of the parametric circuit model, we design the CMUT cell withoptimized parameters such as the membrane radius (a), thickness (tm),insulator thickness (ti) and gap height (tg). The modelalso predicts the amount of second harmonic at the output. To verify theaccuracy of the results, we built a FEM model with the same CMUT parameters. Thedesign starts by choosing ti for the given input voltage level.First, a is selected for the maximum radiation resistance of the array at theoperating frequency. Second, tm is found for the resonance at theinput frequency. Third, tg is chosen for the maximum membrane swing.Under this condition, a frequency shift in the resonant frequency occurs. Secondand third steps are repeated until convergence. This method results in a CMUTarray with a high output power and with low distortion. © 2010 IEEE.Item Open Access Parametric nonlinear lumped element model for circular CMUTs in collapsed mode(2014) Aydoǧdu, E.; Ozgurluk, A.; Atalar, Abdullah; Köymen, HayrettinWe present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations. © 2014 IEEE.Item Open Access Radiation impedance and equivalent circuit for immersed CMUT array element(IEEE, 2006-10) Şenlik, Muhammed N.; Atalar, Abdullah; Köymen, Hayrettin; Olcum, SelimIn this paper, we present equivalent circuit for immersed capacitive micromachined ultrasonic transducers (cMUT), based on an accurate parametric model. We also present an accurate approximation for the radiation impedance cMUT. We develop a design approach for immersed cMUTs using the equivalent circuit. We demonstrate that the equivalent circuit predicts the performance of a cMUT array element composed of many cells in parallel. We investigate the applicability of the equivalent circuit in designing cMUT array elements. © 2006 IEEE.Item Open Access Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers(IEEE, 2010) Senlik, M. N.; Olcum, S.; Köymen, Hayrettin; Atalar, AbdullahThe radiation impedance of a capacitive micromachined ultrasonic transducer (cMUT) with a circular membrane is calculated analytically using its velocity profile for the frequencies up to its parallel resonance frequency for both the immersion and the airborne applications. The results are verified by finite element simulations. The work is extended to calculate the radiation impedance of an array of cMUT cells positioned in a hexagonal pattern. A higher radiation resistance improves the bandwidth as well as the efficiency of the cMUT. The radiation resistance is determined to be a strong function of the cell spacing. It is shown that a center-to-center cell spacing of 1.25 wavelengths maximizes the radiation resistance, if the membranes are not too thin. It is also found that excitation of nonsymmetric modes may reduce the radiation resistance in immersion applications.Item Open Access Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers in collapsed state(IEEE, 2011-10) Özgürlük, Alper; Atalar, Abdullah; Köymen, Hayrettin; Olcum, SelimRadiation impedance is one of the important parameters in designing efficient and wideband capacitive micro-machined ultrasonic transducer (CMUT) arrays. It determines how much acoustical power is generated in the surrounding medium given the membrane motion. Recently, considerable effort has been put to characterize the radiation impedance of CMUT arrays in conventional uncollapsed regime. However, the radiation impedance of an array of CMUT cells in collapsed state has not yet been investigated. To calculate the array radiation impedance in collapse mode, we first calculate the radiation impedance of a single cell CMUT. For the array case, the mutual impedances between the neighboring cells must also be taken into account.We consider an array of 7, 19, 37, and 61 cells placed in a hexagonal pattern and try to determine the radiation impedance for different degrees of collapse. We find that in the collapsed case the peak radiation resistance value is reached at higher kd values, where k is the wavenumber and d is the center to center cell spacing, compared to the uncollapsed regime.Item Open Access Radiation impedance of collapsed capacitive micromachined ultrasonic transducers(Institute of Electrical and Electronics Engineers, 2012) Ozgurluk, A.; Atalar, Abdullah; Köymen, Hayrettin; Olçum, S.The radiation impedance of a capacitive micromachined ultrasonic transducer (CMUT) array is a critical parameter to achieve high performance. In this paper, we present a calculation of the radiation impedance of collapsed, clamped, circular CMUTs both analytically and using finite element method (FEM) simulations. First, we model the radiation impedance of a single collapsed CMUT cell analytically by expressing its velocity profile as a linear combination of special functions for which the generated pressures are known. For an array of collapsed CMUT cells, the mutual impedance between the cells is also taken into account. The radiation impedances for arrays of 7, 19, 37, and 61 circular collapsed CMUT cells for different contact radii are calculated both analytically and by FEM simulations. The radiation resistance of an array reaches a plateau and maintains this level for a wide frequency range. The variation of radiation reactance with respect to frequency indicates an inductance-like behavior in the same frequency range. We find that the peak radiation resistance value is reached at higher kd values in the collapsed case as compared with the uncollapsed case, where k is the wavenumber and d is the center-to-center distance between two neighboring CMUT cells.Item Open Access Rayleigh-bloch waves in CMUT arrays(Institute of Electrical and Electronics Engineers Inc., 2014) Atalar, Abdullah; Köymen, Hayrettin; Oğuz, H. K.Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker lates at the expense of reduced bandwidth. © 2014 IEEE.Item Open Access Resonances and nonuniformities in CMUT elements or arrays(IEEE, 2014-09) Atalar, Abdullah; Köymen, HayrettinWe determine the response of individual cells of a CMUT array immersed in water using the small-signal equivalent circuit of a single cell and radiation impedances. Using a numerically efficient technique, we are able to simulate large arrays. The results indicate the presence of resonances at low frequencies where Rayleigh-Bloch waves are excited on the surface of the array. Reflections from the edges cause standing-wave patterns. Above the cut-off frequency of Rayleigh-Bloch waves, no standing-wave pattern exists. However, there is nonuniformity among cell velocities mainly due to unequal radiation impedance seen by the cells. Rayleigh-Bloch waves and nonuniformity in cell velocities do not cause a significant degradation in the point spread function, but the oscillations extend the duration of impulse response, limiting the dynamic range. © 2014 IEEE.