Rayleigh-bloch waves in CMUT arrays

Date

2014

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Print ISSN

0885-3010

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

61

Issue

12

Pages

2139 - 2148

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker lates at the expense of reduced bandwidth. © 2014 IEEE.

Course

Other identifiers

Book Title

Citation