Radiation impedance of collapsed capacitive micromachined ultrasonic transducers

Date

2012

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Print ISSN

0885-3010

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

59

Issue

6

Pages

1301 - 1308

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The radiation impedance of a capacitive micromachined ultrasonic transducer (CMUT) array is a critical parameter to achieve high performance. In this paper, we present a calculation of the radiation impedance of collapsed, clamped, circular CMUTs both analytically and using finite element method (FEM) simulations. First, we model the radiation impedance of a single collapsed CMUT cell analytically by expressing its velocity profile as a linear combination of special functions for which the generated pressures are known. For an array of collapsed CMUT cells, the mutual impedance between the cells is also taken into account. The radiation impedances for arrays of 7, 19, 37, and 61 circular collapsed CMUT cells for different contact radii are calculated both analytically and by FEM simulations. The radiation resistance of an array reaches a plateau and maintains this level for a wide frequency range. The variation of radiation reactance with respect to frequency indicates an inductance-like behavior in the same frequency range. We find that the peak radiation resistance value is reached at higher kd values in the collapsed case as compared with the uncollapsed case, where k is the wavenumber and d is the center-to-center distance between two neighboring CMUT cells.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)