Browsing by Subject "Near Infrared"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access High efficiency monolithic photodetectors for integrated optoelectronics in the near infrared(IEEE, 2009) Okyay, Ali Kemal; Onbaşlı, M. Cengiz; Ercan, Burcu; Yu H.-Y.; Ren, S.; Miller, D.A.B.; Saraswat, K.C.; Nayfeh, A.M.Monolithic Germanium photodetectors integrated on Si with external efficiency up to 68% at 1550nm and low dark current density 3.2mA/cm2 are demonstrated. The absorption edge red shifted by 47nm corresponding to bandgap energy reduced by 24meV. © 2009 IEEE.Item Open Access Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration(Optical Society of American (OSA), 2011) Boratay Alici, K.; Burak Turhan, A.; Soukoulis, C.M.; Özbay, EkmelWe designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization independent broadband perfect absorption. The structure response remains similar for the wide angle of incidence due to the sub-wavelength unit cell size of the constituting artificial layers. The design is useful for applications such as thermal photovoltaics, sensors, and camouflage. ©2011 Optical Society of America.Item Open Access Plasmonic gratings for enhanced near infrared sensitivity of Silicon based Schottky photodetectors(IEEE, 2011) Polat, Kazım Gürkan; Aygun, Levent Erdal; Okyay, Ali KemalSchottky photodetectors have been intensively investigated due to their high speeds, low device capacitances, and sensitivity in telecommunication standard bands, in the 0.8μm to 1.5μm wavelength range. Due to extreme cost advantage of Silicon over compound semiconductors, and seamless integration with VLSI circuits, metal-Silicon Schottky photodetectors are attractive low cost alternatives to InGaAs technology. However, efficiencies of Schottky type photodetectors are limited due to thin absorption region. Previous efforts such as resonant cavities increase the sensitivity using optical techniques, however their integration with VLSI circuits is difficult. Therefore, there is a need for increasing Schottky detector sensitivity, in a VLSI compatible fashion. To address this problem, we design plasmonic grating structures to increase light absorption at the metal-Silicon Schottky interface. There are earlier reports of plasmonic structures to increase Schottky photodetector sensitivity, with a renowned interest in the utilization of plasmonic effects to improve the absorption characteristics of metal-semiconductor interfaces. In this work, we report the design, fabrication and characterization of Gold-Silicon Schottky photodetectors with enhanced absorption in the near infrared region. © 2011 IEEE.Item Open Access Silicon-Germanium multi-quantum well photodetectors in the near infrared(Optical Society of American (OSA), 2012) Onaran, E.; Onbasli, M. C.; Yesilyurt, A.; Yu, H. Y.; Nayfeh, A. M.; Okyay, Ali KemalSingle crystal Silicon-Germanium multi-quantum well layers were epitaxially grown on silicon substrates. Very high quality films were achieved with high level of control utilizing recently developed MHAH epitaxial technique. MHAH growth technique facilitates the monolithic integration of photonic functionality such as modulators and photodetectors with low-cost silicon VLSI technology. Mesa structured p-i-n photodetectors were fabricated with low reverse leakage currents of ∼10 mA/cm2 and responsivity values exceeding 0.1 A/W. Moreover, the spectral responsivity of fabricated detectors can be tuned by applied voltage. © 2012 Optical Society of America.Item Open Access Ultra-low-cost broad-band near-infrared silicon photodetectors based on hot electrons(2015) Nazirzadeh, Mohammad AminSilicon is at the heart of all of the end-user digital devices such as smart phones, laptops, and wearable technologies. It is the holy grail for the largescale production of semiconductor devices since start of the semiconductor era due to its relatively good electrical, mechanical and chemical properties. Silicon’s mediocre optical properties also make it an acceptable material for energy harvesting and ultraviolet photodetection applications. But its relatively large bandgap (1.12 eV ) makes it infrared blind. So Silicon photodetectors fail to detect infrared light using traditional techniques. Hence, an all-Silicon solution is of interest for low-cost civil applications like telecommunication and imaging. Silicon based Schottky junction is a promising candidate for infrared photodetection. Internal photoemission is the main mechanism of photodetection in the Schottky junctions. Incident photons elevate the kinetic energy of the electrons in the metal so that the energetic electrons can jump over the Schottky barrier or tunnel through it. Carefully designed metal contact of the Schottky junction can, at the same time, give rise to hot electron generation through plasmon resonances. Here we introduce ultra-low-cost broad-band near-infrared Silicon photodetectors with a study over types of metal and nanostructures and fabrication techniques. The devices exhibit photoresponsivity as high as 2 mA/W and 600 µA/W at 1300 nm and 1550 nm wavelengths, and can see beyond 2000 nm wavelengths. Their dark current density is as low as 50 pA/µm2 . Simplicity and scalability of fabrication in this type of structures make them the most cost effective infrared detectors due to lack of expensive fabrication steps such as sub-micron lithography and high temperature epitaxial growth techniques.Item Open Access Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas(Optical Society of American (OSA), 2014) Cakmakyapan, S.; Cinel, N.A.; Cakmak, A.O.; Özbay, EkmelWe introduced fractal geometry to the conventional bowtie antennas. We experimentally and numerically showed that the resonance of the bowtie antennas goes to longer wavelengths, after each fractalization step, which is considered a tool to miniaturize the main bowtie structure. We also showed that the fractal geometry provides multiple hot spots on the surface, and it can be used as an efficient SERS substrate. © 2014 Optical Society of America.